SEISMOLOGY AND EGOLOGY ›› 2022, Vol. 44 ›› Issue (1): 220-237.DOI: 10.3969/j.issn.0253-4967.2022.01.014
• Research paper • Previous Articles Next Articles
XU Fang1)(), LU Ren-qi1),*(), WANG Shuai2), JIANG Guo-yan3), LONG Feng4), WANG Xiao-shan5), SU Peng1), LIU Guan-shen1)
Received:
2021-01-15
Revised:
2021-04-27
Online:
2022-02-20
Published:
2022-04-20
Contact:
LU Ren-qi
徐芳1)(), 鲁人齐1),*(), 王帅2), 江国焰3), 龙锋4), 王晓山5), 苏鹏1), 刘冠伸1)
通讯作者:
鲁人齐
作者简介:
徐芳, 女, 1997年生, 2019年于合肥工业大学获地质学学士学位, 现为中国地震局地质研究所构造地质学专业在读硕士研究生, 主要从事活动构造分析与三维建模研究, E-mail: xufangq@sina.cn。
基金资助:
CLC Number:
XU Fang, LU Ren-qi, WANG Shuai, JIANG Guo-yan, LONG Feng, WANG Xiao-shan, SU Peng, LIU Guan-shen. STUDY ON THE SEISMOTECTONICS OF THE QINGBAIJIANG MS5.1 EARTHQUAKE IN SICHUAN PROVINCE IN 2020 BY MULTIPLE CONSTRAINT METHOD[J]. SEISMOLOGY AND EGOLOGY, 2022, 44(1): 220-237.
徐芳, 鲁人齐, 王帅, 江国焰, 龙锋, 王晓山, 苏鹏, 刘冠伸. 基于多元约束方法的2020年四川青白江MS5.1地震构造研究[J]. 地震地质, 2022, 44(1): 220-237.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.dzdz.ac.cn/EN/10.3969/j.issn.0253-4967.2022.01.014
机构或学者 | 位置 | 节面Ⅰ | 节面Ⅱ | 深度 /km | 震级 | |||||
---|---|---|---|---|---|---|---|---|---|---|
东经 /(°) | 北纬 /(°) | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | |||
Lei et al., | 104.46 | 30.74 | 15 | 36 | 82 | 205 | 54 | 96 | 3.3 | MS5.1 |
GCMT, | 104.54 | 30.57 | 30 | 33 | 114 | 183 | 60 | 75 | 12.5 | MS4.8 |
中国地震台网中心, | 104.46 | 30.74 | 21 | MS5.1 | ||||||
USGS, | 104.54 | 30.76 | 45 | 77 | 105 | 175 | 19 | 41 | 10 | MW4.8 |
韩颜颜等, | 104.46 | 30.74 | 25 | 34 | 100 | 193 | 57 | 83 | 5 | MW4.8 |
本文 | 104.48 | 30.73 | 18 | 32 | 100 | 186 | 59 | 84 | 5 | MW4.6 |
Table 1 Focal mechanism of the MS5.1 Qingbaijiang earthquake
机构或学者 | 位置 | 节面Ⅰ | 节面Ⅱ | 深度 /km | 震级 | |||||
---|---|---|---|---|---|---|---|---|---|---|
东经 /(°) | 北纬 /(°) | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | 走向 /(°) | 倾角 /(°) | 滑动角 /(°) | |||
Lei et al., | 104.46 | 30.74 | 15 | 36 | 82 | 205 | 54 | 96 | 3.3 | MS5.1 |
GCMT, | 104.54 | 30.57 | 30 | 33 | 114 | 183 | 60 | 75 | 12.5 | MS4.8 |
中国地震台网中心, | 104.46 | 30.74 | 21 | MS5.1 | ||||||
USGS, | 104.54 | 30.76 | 45 | 77 | 105 | 175 | 19 | 41 | 10 | MW4.8 |
韩颜颜等, | 104.46 | 30.74 | 25 | 34 | 100 | 193 | 57 | 83 | 5 | MW4.8 |
本文 | 104.48 | 30.73 | 18 | 32 | 100 | 186 | 59 | 84 | 5 | MW4.6 |
[1] | 曹伟. 1994. 龙门山推覆构造带中段前缘构造浅析[J]. 石油实验地质, 16(1): 35-42. |
CAO Wei. 1994. On the overthrusting tectonics of the front margin along the middle section of the Longmenshan tectonic belt[J]. Experimental Petroleum Geology, 16(1): 35-42. (in Chinese) | |
[2] | 陈社发, 邓起东, 赵小麟, 等. 1994. 龙门山中段推覆构造带及相关构造的演化历史和变形机制(二)[J]. 地震地质, 16(4): 413-421. |
CHEN She-fa, DENG Qi-dong, ZHAO Xiao-lin, et al. 1994. Deformational characteristics, evolutionary history, and deformation mechanism of the middle Longmenshan thrust-nappes and related tectonics[J]. Seismology and Geology, 16(4): 413-421. (in Chinese) | |
[3] | 陈竹新, 王丽宁, 杨光, 等. 2020. 川西南冲断带深层地质构造与潜在油气勘探领域[J]. 石油勘探与开发, 47(4): 653-667. |
CHEN Zhu-xin, WANG Li-ning, YANG Guang, et al. 2020. Geological structures and potential petroleum exploration areas in the southwestern Sichuan fold-thrust belt, SW China[J]. Petroleum Exploration and Development, 47(4): 653-667. (in Chinese) | |
[4] | 邓起东, 陈社发, 赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学[J]. 地震地质, 16(4): 389-403. |
DENG Qi-dong, CHEN She-fa, ZHAO Xiao-lin. 1994. Tectonics, seismicity and dynamics of Longmenshan Mountains and its adjacent regions[J]. Seismology and Geology, 16(4): 389-403. (in Chinese) | |
[5] | 国家地震科学数据中心. 2020. 中国台网正式地震目录[EB/OL]. [2020-11-01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_zhengshi. |
National Earthquake Data Center. 2020. Official earthquake catalogue of China Network[EB/OL]. [2020-11-01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_zhengshi. (in Chinese) | |
[6] | 韩颜颜, 马亚伟, 解孟雨, 等. 2020. 2020年2月3日四川青白江5.1级地震总结[J]. 地震地磁观测与研究, 41(5): 141-152. |
HAN Yan-yan, MA Ya-wei, XIE Meng-yu, et al. 2020. Summary of Qingbaijiang MS5.1 earthquake in Sichuan on February 3, 2020[J]. Seismological and Geomagnetic Observation and Research, 41(5): 141-152. (in Chinese) | |
[7] | 黄伟, 江娃利. 2012. 四川龙泉山断裂带及其活动性与潜在地震危险性讨论[J]. 西北地震学报, 34(1): 50-56. |
HUANG Wei, JIANG Wa-li. 2012. Discussion on the Late Quaternary activity and earthquake risk potential of Longquanshan Fault in Sichuan[J]. Northwestern Seismological Journal, 34(1): 50-56. (in Chinese) | |
[8] | 黄祖智, 唐荣昌. 1995. 龙泉山活动断裂带及其潜在地震能力的探讨[J]. 四川地震, (1): 18-23. |
HUANG Zu-zhi, TANG Rong-chang. 1995. The Longquanshan fault zone and exploration of potential earthquake ability[J]. Earthquake Research in Sichuan, (1): 18-23. (in Chinese) | |
[9] | 李洪奎, 李忠权, 龙伟, 等. 2019. 四川盆地纵向结构及原型盆地叠合特征[J]. 成都理工大学学报(自然科学版), 46(3): 257-267. |
LI Hong-kui, LI Zhong-quan, LONG Wei, et al. 2019. Vertical configuration of Sichuan Basin and its superimposed characteristics of the prototype basin[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 46(3): 257-267. (in Chinese) | |
[10] | 刘亮, 梁斌, 燕中林, 等. 2019. 龙泉山断裂带隐伏断层氡气特征及其活动性分析[J]. 沉积与特提斯地质, 39(2): 45-53. |
LIU Liang, LIANG Bin, YAN Zhong-lin, et al. 2019. Soil gas radon and fault activity in the Longquanshan fault zone, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 39(2): 45-53. (in Chinese) | |
[11] | 刘亮, 梁斌, 燕中林, 等. 2020. 龙泉山断裂带断层最新活动年代及方式[J]. 中国地质调查, 7(5): 77-87. |
LIU Liang, LIANG Bin, YAN Zhong-lin, et al. 2020. Latest active age and model of the faults in Longquanshan fault belt[J]. Geological Survey of China, 7(5): 77-87. (in Chinese) | |
[12] | 刘树根, 李智武, 曹俊兴, 等. 2009. 龙门山陆内复合造山带的四维结构构造特征[J]. 地质科学, 44(4): 1151-1180. |
LIU Shu-gen, LI Zhi-wu, CAO Jun-xing, et al. 2009. 4-D textural and structural characteristics of Longmen intracontinental composite orogenic belt, southwest China[J]. Chinese Journal of Geology, 44(4): 1151-1180. (in Chinese) | |
[13] | 刘树根, 罗志立, 赵锡奎, 等. 2003. 中国西部盆山系统的耦合关系及其动力学模式: 以龙门山造山带-川西前陆盆地系统为例[J]. 地质学报, 77(2): 177-186. |
LIU Shu-gen, LUO Zhi-li, ZHAO Xi-kui, et al. 2003. Coupling relationships of sedimentary basin-orogenic belt systems and their dynamic models in West China: A case study of Longmenshan orogenic belt-West Sichuan foreland basin system[J]. Acta Geologica Sinica, 77(2): 177-186. (in Chinese) | |
[14] | 鲁人齐, 何登发, Suppe J, 等. 2010. 龙门山中段山前带浅层冲断系统的结构、 形成与演化[J]. 地质科学, 45(4): 997-1010. |
LU Ren-qi, HE Deng-fa, Suppe J, et al. 2010. The structures, formation and evolution of the shallow thrusting system in the central Longmen Mountains front belt[J]. Chinese Journal of Geology, 45(4): 997-1010. (in Chinese) | |
[15] | 钱琦, 韩竹军. 2011. 汶川地震对龙泉山断裂地震发生概率的影响研究[J]. 地球物理学进展, 26(2): 489-497. |
QIAN Qi, HAN Zhu-jun. 2011. The research in the change of the earthquake occurrence probability in Longquan Shan Fault after the Wenchuan earthquake[J]. Progress in Geophysics, 26(2): 489-497. (in Chinese) | |
[16] | 四川省地震局. 2020. 2020年2月3日四川成都青白江5.1级地震烈度图分布及说明[EB/OL].(2020-02-04) [2020-12-28]. http://www.scdzj.gov.cn/xwzx/fzjzyw/202002/t20200204_12909.html. |
Sichuan Earthquake Agency. 2020. Intensity map distribution and explanation of Qingbaijiang MS5.1 earthquake in Chengdu, Sichuan Province on February 3, 2020[EB/OL].(2020-02-04) [2020-12-28]. http://www.scdzj.gov.cn/xwzx/fzjzyw/202002/t20200204_12909.html. (in Chinese) | |
[17] |
宋小刚, 申星, 姜宇, 等. 2015. 通过InSAR与GPS数据融合获取汶川地震同震三维形变场[J]. 地震地质, 37(1): 222-231. doi: 10.3969/j.issn.0253-4967.2015.01.017.
DOI |
SONG Xiao-gang, SHEN Xing, JIANG Yu, et al. 2015. Coseismic 3D deformation field acquisition of the Wenchuan earthquake based on InSAR and GPS data[J]. Seismology and Geology, 37(1): 222-231. (in Chinese) | |
[18] | 孙晓鹏, 鲁小丫, 文学虎, 等. 2016. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 28(3): 123-129. |
SUN Xiao-peng, LU Xiao-ya, WEN Xue-hu, et al. 2016. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. Remote Sensing for Land & Resources, 28(3): 123-129. (in Chinese) | |
[19] | 王伟涛, 贾东, 李传友, 等. 2008. 四川龙泉山断裂带变形特征及其活动性初步研究[J]. 地震地质, 30(4): 968-979. |
WANG Wei-tao, JIA Dong, LI Chuan-you, et al. 2008. Preliminary investigation on deformation characteristics and activity of Longquanshan fault belt in Sichuan[J]. Seismology and Geology, 30(4): 968-979. (in Chinese) | |
[20] | 徐水森, 任寰, 宋杰. 2006. 龙泉山断裂带地震活动性浅析[J]. 四川地震, (2): 21-27. |
XU Shui-sen, REN Huan, SONG Jie. 2006. Primary study on the seismicity along the faults of Longquanshan[J]. Earthquake Research in Sichuan, (2): 21-27. (in Chinese) | |
[21] | 郑勇, 马宏生, 吕坚, 等. 2009. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学(D辑), 39(4): 413-426. |
ZHENG Yong, MA Hong-sheng, LÜ Jian, et al. 2009. Focal mechanism solution of strong aftershocks(MS≥5.6)of Wenchuan earthquake and its relationship with seismogenic structure[J]. Science in China(Ser D), 39(4): 413-426. (in Chinese) | |
[22] | 中国地震台网中心. 2020. 四川成都市青白江区5.1级地震[EB/OL].(2020-02-04) [2020-12-28]. http://news.ceic.ac.cn/CC20200203000542.html. |
China Earthquake Networks Center. 2020. Qingbaijiang MS5.1 earthquake in Chengdu, Sichuan[EB/OL].(2020-02-04) [2020-12-28]. http://news.ceic.ac.cn/CC20200203000542.html. (in Chinese) | |
[23] |
Butler R W H, Bond C E, Cooper M A, et al. 2018. Interpreting structural geometry in fold-thrust belts: Why style matters[J]. Journal of Structural Geology, 114(9): 251-273. doi: 10.1016/j.jsg.2018.06.019.
DOI URL |
[24] | Chen S F, Wilson C J L. 1996. Emplacement of the Longmen Shan thrust-nappe belt along the eastern margin of the Tibetan plateau[J]. Journal of Structural Geology, 18(4): 413-430. |
[25] | GCMT. 2020. 202002021605A SICHUAN, CHINA[EB/OL].(2020-02-04) [2020-12-28]. https://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT5/form?itype=ymd&yr=2020&mo=2&day=1&otype=ymd&oyr=2020&omo=3&oday=1&jyr=1976&jday=1&ojyr=1976&ojday=1&nday=1&lmw=0&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=30.5&ulat=31&llon=104.4&ulon=104.6&lhd=0&uhd=1000<s=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0. |
[26] | Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 112(B8): B08416. |
[27] |
Gomberg J S, Shedlock K M, Roecker S W. 1990. The effect of S-wave arrival times on the accuracy of hypocenter estimation[J]. Bulletin of the Seismological Society of America, 80(6): 1605-1628.
DOI URL |
[28] |
Hubbard J, Shaw J H. 2009. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan(M=7.9)earthquake[J]. Nature, 458(7235): 194-197.
DOI URL |
[29] |
Jia D, LiY Q, Lin A M, et al. 2010. Structural model of 2008 MW7.9 Wenchuan earthquake in the rejuvenated Longmen Shan thrust belt, China[J]. Tectonophysics, 491(1): 174-184.
DOI URL |
[30] |
Jia D, Li Y Q, Yan B, et al. 2020. The Cenozoic thrusting sequence of the Longmen Shan fold-and-thrust belt, eastern margin of the Tibetan plateau: Insights from low-temperature thermochronology[J]. Journal of Asian Earth Sciences, 198:1-13. doi: 10.1016/j.jseaes.2020.104381.
DOI |
[31] |
Jia D, Wei G Q, Chen Z X, et al. 2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China: New insights from hydrocarbon exploration[J]. AAPG Bulletin, 90(9): 1425-1447.
DOI URL |
[32] | Jia K. 2020. Modeling the spatiotemporal seismicity patterns of the Longmen Shan fault zone based on the Coulomb rate and state model[J]. Seismological Research Letters, (1): 275-286. |
[33] |
Jiang G Y, Wang Y B, Wen Y M, et al. 2019. Afterslip evolution on the crustal ramp of the Main Himalayan Thrust fault following the 2015 MW7.8 Gorkha(Nepal)earthquake[J]. Tectonophysics, 758:29-43. doi: 10.1016/j.tecto.2019.03.005.
DOI URL |
[34] |
Jiang G Y, Wen Y M, Li K, et al. 2018. A NE-trending oblique-slip fault responsible for the 2016 Zaduo earthquake(Qinghai, China)revealed by InSAR data[J]. Pure and Applied Geophysics, 175(12): 4275-4288.
DOI URL |
[35] | Lei X L, Su J R, Wang Z W. 2020. Growing seismicity in the Sichuan Basin and its association with industrial activities[J]. Science China(Earth Sciences), 63(11): 1633-1660. |
[36] |
Li K, Xu X W, Tan X B, et al. 2015. Late Quaternary deformation of the Longquan anticline in the Longmenshan thrust belt, eastern Tibet, and its tectonic implication[J]. Journal of Asian Earth Sciences, 112(11): 1-10. doi: 10.1016/j.jseaes.2015.08.022.
DOI URL |
[37] |
Li Z G, Jia D, Chen W. 2013. Structural geometry and deformation mechanism of the Longquan anticline in the Longmen Shan fold-and-thrust belt, eastern Tibet[J]. Journal of Asian earth sciences, 64(3): 223-234. doi: 10.1016/j.jseaes.2012.12.022.
DOI URL |
[38] |
Li Z G, Zhang P Z, Zheng W J, et al. 2018. Oblique thrusting and strain partitioning in the Longmen Shan fold-and-thrust belt, eastern Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 123(5): 4431-4453.
DOI URL |
[39] |
Lu R Q, He D F, Xu X W, et al. 2016. Crustal-scale tectonic wedging in the central Longmen Shan: Constraints on the uplift mechanism in the southeastern margin of the Tibetan plateau[J]. Journal of Asian Earth Sciences, 117(3): 73-81. doi: 10.1016/j.jseaes.2015.11.019.
DOI URL |
[40] |
Lu R Q, He D F, Xu X W, et al. 2019. Geometry and kinematics of buried structures in the piedmont of the central Longmen Shan: Implication for the growth of the eastern Tibetan plateau[J]. Journal of the Geological Society, 176(2): 323-333.
DOI URL |
[41] | Pavlis G L. 1986. Appraising earthquake hypocenter location errors: A complete, practical approach for single-event location[J]. Bulletin of the Seismological Society of America, 76(6): 1699-1717. |
[42] |
Schweitzer J. 2001. HYPOSAT: An enhanced routine to locate seismic events[J]. Pure and Applied Geophysics, 158(1-2): 277-289.
DOI URL |
[43] | Shaw J H, Connors C, Suppe J. 2004. Seismic Interpretation of Contractional Fault-Related Folds: An AAPG Seismic Atlas[M]. Tulsa: The American Association of Petroleum Geologists. |
[44] |
Suppe J. 1983. Geometry and kinematics of fault-bend folding[J]. American Journal of Science, 283(7): 684-721.
DOI URL |
[45] | USGS. 2020. M4.8-14km SE of Zhaozhen, China[EB/OL].(2020-04-18) [2020-12-28]. https://earthquake.usgs.gov/earthquakes/eventpage/us60007mte/origin/detail. |
[46] |
Waldhauser F, Ellworth W L. 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California[J]. Bulletin of the Seismological Society of America, 90(6): 1353-1368.
DOI URL |
[47] |
Wang M M, Lin A M. 2017. Active thrusting of the Longquan Fault in the central Sichuan Basin, China, and the seismotectonic behavior in the Longmen Shan fold-and-thrust belt[J]. Journal of Geophysical Research: Solid Earth, 122(7): 5639-5662.
DOI URL |
[48] | Wang S, Jiang G Y, Weingarten M, et al. 2020. InSAR evidence indicates a link between fluid injection for salt mining and the 2019 Changning(China)earthquake sequence[J]. Geophysical Research Letters, 47(16): e2020GL087603. |
[49] | Werner C, Wegmüller U, Strozzi T, et al. 2001. GAMMA SAR and interferometric processing software[C]. Proceedings of ERS ENVISAT Symposium, Gothenburg, Sweden, 16-20, Oct. 2000. |
[50] |
Wright T J, Parsons B E, Jackson J A, et al. 1999. Source parameters of the 1 October 1995 Dinar(Turkey)earthquake from SAR interferometry and seismic bodywave modelling[J]. Earth and Planetary Science Letters, 172(1): 23-37.
DOI URL |
[51] |
Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9): 809-812.
DOI URL |
[52] | Zhao L S, Helmberger D V. 1994. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 84(1): 91-104. |
[53] |
Zhu L P, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 86(5): 1634-1641.
DOI URL |
[1] | LI Qian, SONG Qian-jin, FENG Shao-ying, JI Ji-fa, DUAN Yong-hong, HE Yin-juan, QIN Jing-jing. DEEP STRUCTURES OF THE MIDDLE-SOUTHERN SEGMENT OF LANLIAO FAULT ZONE REVEALED BY DEEP SEISMIC REFLECTION PROFILE [J]. SEISMOLOGY AND GEOLOGY, 2022, 44(4): 1029-1045. |
[2] | HUA Jun, ZHAO De-zheng, SHAN Xin-jian, QU Chun-yan, ZHANG Ying-feng, GONG Wen-yu, WANG Zhen-jie, LI Cheng-long, LI Yan-chuan, ZHAO Lei, CHEN Han, FAN Xiao-ran, WANG Shao-jun. COSEISMIC DEFORMATION FIELD, SLIP DISTRIBUTION AND COULOMB STRESS DISTURBANCE OF THE 2021 MW7.3 MADUO EARTHQUAKE USING SENTINEL-1 INSAR OBSERVATIONS [J]. SEISMOLOGY AND GEOLOGY, 2021, 43(3): 677-691. |
[3] | HE Fu-bing, XU Xi-wei, HE Zhen-jun, ZHANG Xiao-liang, LIU Li-yan, ZHANG Wei, WEI Bo, NI Jing-bo. RESEARCH ON NEOGENE-QUATERNARY STRATIGRAPHIC STRUCTURE AND SHALLOW TECTONIC FEATURES IN THE NORTH SECTION OF DAXING FAULT ZONE BASED ON SHALLOW SEISMIC REFLECTION PROFILING [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(4): 893-908. |
[4] | GU Qin-ping, XU Han-gang, YAN Yun-xiang, ZHAO Qi-guang, LI Li-mei, MENG Ke, YANG Hao, WANG Jin-yan, JIANG Xin, MA Dong-wei. THE CRUSTAL SHALLOW STRUCTURES AND FAULT ACTIVITY DETECTION IN XINYI SECTION OF TAN-LU FAULT ZONE [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(4): 825-843. |
[5] | WANG Hao-ran, CHEN Jie, LI Tao, LI Yue-hua, ZHANG Bo-xuan. QUATERNARY FOLDING OF THE XIHU ANTICLINE BELT ALONG FORELAND BASIN OF NORTH TIANSHAN [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(4): 791-805. |
[6] | ZHAN Hui-li, ZHANG Dong-li, HE Xiao-hui, SHEN Xu-zhang, ZHENG Wen-jun, LI Zhi-gang. LIMITATION OF CURRENT TECTONIC DEFORMATION MODES IN THE WESTERN MARGIN OF ORDOS BASED ON SEISMIC ACTIVITY CHARACTERISTICS [J]. SEISMOLOGY AND GEOLOGY, 2020, 42(2): 346-365. |
[7] | TIAN Yi-ming, LIU Bao-jin, SHI Jin-hu, WANG Xiao-qian, FENG Shao-ying, LI Wen. SHALLOW STRUCTURE AND ACTIVITY CHARACTERISTICS OF THE ZHUYANGGUAN-XIAGUAN FAULT IN THE NANYANG BASIN [J]. SEISMOLOGY AND GEOLOGY, 2018, 40(1): 87-96. |
[8] | WANG Liang, ZHOU Long-quan, HUANG Jin-shui, JIAO Ming-ruo, LIANG Yi-jing, YANG Mu-ping. SIMULTANEOUS INVERSION OF EARTHQUAKE HYPOCENTERS AND VELOCITY STRUCTURE IN ZIPINGPU RESERVOIR AREA [J]. SEISMOLOGY AND GEOLOGY, 2015, 37(3): 748-764. |
[9] | LIU Bao-jin, YANG Xiao-ping, FENG Shao-ying, KOU Kun-peng. EXPLORATION OF SUSPECTED SURFACE RUPTURES OF THE MS 8.0 WENCHUAN EARTHQUAKE AT FRONTAL AREAS OF LONGMENSHAN USING SHALLOW SEISMIC REFLECTION [J]. SEISMOLOGY AND GEOLOGY, 2008, 30(4): 906-916. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||