The Weinan Tableland Piedmont fault is an important near-EW-trending Holocene active fault in the southeastern margin of the Weihe Basin, which is closely related to the occurrence of the 1556 Huaxian M8 earthquake. The northern branch of the fault, the northern branch fault in front of the Weinan tableland, passes through the urban area of Weinan. Therefore, finding out the distribution, shallow structure, late Quaternary activity, and seismic capacities of the northern branch fault are of great significance for local earthquake prevention and reduction. The Weihua fault zone, which is composed of F1 and F2 faults, generally strikes near east-west and has a gentle wave shape on the plane. It is a group of active normal faults rising in the south and descending in the north belt one. The Wei-Hua fault zone can be divided into two segments, east and west, and according to its spatial location and geometric distribution, strike change and the difference in geology and landforms on both sides. The eastern section is distributed in front of Huashan Mountain and is called Huashan Piedmont Fault(F2); the western section is distributed in Piedmont of Weinan tableland and is called Weinan Piedmont Fault(F1). There is a large sub-parallel branch fault about 2km to the north of the Piedmont Weinan tableland fault(F1)in the west section, which is called the branch fault on the north side of the Piedmont Weinan tableland. It is also the boundary fault between the Weinan tabland and the Gushi Sag. The Weinan tableland Piedmont Fault(F1)starts from the Weinan Xihekou in the west and extends eastwards through the Fenghe River to Mayukou, Huaxian County, with a length of about 54km; it strikes NWW from the Mayukou to Chishui River, and nearly EW from the Chishui River to the Fenghe River, the west of the Minhe River is NE to NEE, and it is mostly distributed in the form of broken lines or oblique rows. The fault plane dips northward with a dip angle of 60°~70°. The latest activity of the fault is manifested in the latest terraces and alluvial-pluvial fans faulting the Holocene strata, river valleys, and gullies; along the main fault, and a series of stepped normal faults on the north and south sides, a Holocene steep ridge belt with a width of between tens of meters and hundreds of meters, the Holocene strata are vertically faulted by 6~7m, and the vertical slip rate since the Late Pleistocene is about 0.29mm/a. In this paper, the shallow location and structural characteristics of the branch fault on the north side of the front of the Weinan tableland are determined through the combined profile detection of shallow seismic exploration and drilling, and evidence of the new activity of the fault is provided. The shallow seismic exploration results of the four survey lines all reveal the existence of a branch fault on the northern side of the front of the Weinan tableland, as well as the distribution location and cross-sectional structural characteristics of the fault new understanding. The results show that the branch fault on the north side of the Weinan Tableland Piedmont fault is a parallel branch of the main fault in front of the Weinan tabland. The branch fault on the north side of the front of the Weinan tableland is located at the front edge of the second-level terrace of the Weihe River in front of the Weinan tableland. The south end of the road, the mouth of the river, Zhangbaozi, and the outside of the north gate, have a length of at least 22km. The main section of the fault is inclined to the north, with a dip angle of about 70°~80° and a break distance of 6~20m at the upper breaking point, so it is a normal fault. Mainly concealed active faults, which have at least faulted the strata from the Middle Pleistocene to the late Pleistocene in the upward direction. In the four seismic sections, it appears as a normal fault zone with a width of 200~1 800m, including the main and secondary normal faults. Stepped structures and small grabens; secondary faults also fault up at least the Late Pleistocene strata. The combined geological profile of the Chongye Road borehole revealed that the main fault on the north side of the Weinan tableland had been faulted with many landmark strata of the Late Quaternary, and the latest fault occurred after 19ka; the average vertical activity rate since the middle of the Late Pleistocene between 0.07~0.26mm/a. Combined with phenomena such as fault ridges developed along the surface of the fault, it is judged that the fault was active in the Holocene. The branch fault on the north side of the front of the Weinan tableland has had strong activity since the late Quaternary, which means that the fault, as one of the branches of the southeastern boundary zone of the Weihe fault basin-the Weihua fault zone-obviously bears part of the deformation of the belt At the same time, the fault is located in the historically strong earthquake-prone area of the southeastern boundary of the Weihe fault basin, and it cannot be ruled out that it once participated in the rupture of the 1556 Huaxian M8 earthquake. Considering that the branch fault on the north side of the Weinan tableland passes through the urban area of Weinan, its potential seismic hazard and hazard are urgent research topics.
The northern Qinling fault zone is an important active structure in the southern margin of the Weihe Graben Basin, containing many branch faults, of which the near EW striking Taochuan-Huxian Fault is located on the northern side of the fault zone, and the eastern segment is buried in the Weihe Graben Basin. Shallow seismic exploration has been carried out on the middle part of the buried segment of this fault, and the fault inferred to be a late Pleistocene fault with normal strike-slip movement, but the age and rate of the latest activity have not been determined. By conducting new shallow seismic and drilling joint exploration, we further study the shallow structure, the geometric distribution, the latest activity era and the slip rate in the Quaternary in the two segments of the Taochuan-Huxian Fault. The profile of shallow seismic exploration line TB1 reveals that the west segment of the Taochuan-Huxian Fault with NEE trend can extend at least 20km westward from Taochuan Town. The main fault plane dips to N, and the normal-slip movement has faulted the Quaternary bottom boundary and the underlying crystalline basement in the Taibai Basin. The vertical offset of the Quaternary bottom boundary is about 300m, and the remnants of the old thrust structure are still preserved in the fault zone. The shallow seismic reflection lines ZZ1 and YX1-2 reveal the location of the eastern Taochuan-Huxian Fault with the EW striking buried in the Quaternary of the Weihe Graben Basin in Zhouzhi and Huxian. The main fault plane dips to N, and the fault zone is represented by a fault depression zone of about 6km wide and a stepped structure of about 4km wide respectively. The fault up-breakpoints on both profiles offset the bottom boundary of the Holocene in the Weihe Graben Basin. The drilling joint profile exploration applied at Tanjiazhai in Zhouzhi County and Xiashimasi in Meixian County show that the Taochuan-Huxian Fault is distributed in the junction of the southern Weihe Granben Basin and the Qinling Mountains, where the Holocene marker layer S0 has been vertically offset by 4~5m, yielding an average vertical slip rate of 0.4~1.3mm/a. Combined with the results of shallow seismic surveys, it is well demonstrated that the eastern segment of the Taochuan-Huxian Fault(buried in the Weihe Graben Basin)shows Holocene activity, and it is significantly more active than the western segment(the Taibai Basin segment). This may be due to the fact that the eastern segment has been incorporated into the Weihe Graben Basin and has become part of the primary active tectonic zone on the block boundary, while the western segment has not been incorporated. Spatially, the eastern segment of the Taochuan-Huixian Fault is subparallel to the middle-eastern segment of the North Qinling Fault, which is capable of generating strong earthquakes of magnitude 7 or higher. As an important branch of the North Qinling Fault, the Taochuan-Huixian Fault may also be under the same strong seismic background. These two faults probably jointly control the important active boundary of the southern margin of the Weihe Graben Basin. Future research in seismology and geology of these two faults should be strengthened, including their interrelationships at depth, their roles in vertical and horizontal movement distribution, and their seismogenic capacity and potential seismic hazard. In particular, the activity of the Taochuan-Huoxian Fault since the late Quaternary has only recently received attention, and the level of seismo-geological research on the fault is generally low. In this paper, we conducted preliminary studies on the location, shallow tectonic structure, activity segmentation, latest activity and Holocene vertical slip rate of this fault. Future research on the seismogenic structure of the Taochuan-Huoxian Fault needs to be strengthened in order to deepen and improve the understanding of the fault activity and to provide a basis for analyzing the seismic hazard of this fault.
Coseismic displacement plays a role in earthquake surface rupture, which not only reflects the magnitude scale but also has effect on estimates of fault slip rate and earthquake recurrence intervals. A great historical earthquake occurred in Huaxian County on the 23rd January 1556, however, there was lack of surface rupture records and precise coseismic vertical displacements. It's known that the 1556 Huaxian earthquake was caused by Huashan front fault and Weinan plateau front fault, which are large normal faults in the east part of the southern boundary faults in Weihe Basin controlling the development of the basin in Quaternary. Here, we made a study on three drilling sites in order to unveil the coseismic vertical displacements. It is for the first time to get the accurate coseismic vertical displacements, which is 6m at Lijiapo site of Huashan front fault, 7m at Caiguocun site, and 6m at Guadicun site of Weinan plateau front fault. These coseismic displacements measured based on same layers of drilling profiles both at footwall and hanging wall are different from the results measured by former geomorphological fault scarps. It's estimated that some scarps are related with the nature reformation and the human beings' activities, for example, fluviation or terracing field, instead of earthquake acticity, which leads to some misjudgment on earthquake displacements. Moreover, the vertical displacements from the measurement of geomorphological scarps alone do not always agree with the virtual ones. Hence, we assume that the inconsistency between the results from drilling profiles and geomorphological scarps in this case demonstrates that the fault scarp surface may have been demolished and rebuilt by erosion or human activities.
The Longmenshan Fault zone is an important thrust belt on the eastern margin of the Qinghai-Tibet Plateau,consisting of the back-range,the central and the front-range faults,which differ from each other in size and activity.The rupture zone of the Wenchuan earthquake of 12 May 2008 occurred over a length of~270km along the Yingxiu-Beichuan Fault(a segment of the Central Fault)and a length of~70km along the Guanxian-Anxian Fault(a segment of the Front-Range Fault).The northern end of the fracture zone is at the Nanba region in Central Fault.In this work,we make a detailed field investigation on the northeast segment of the Longmenshan Fault zone.Qingchuan Fault is the northeast segment of the Longmenshan Back-range Fault,and the Chaba-Lin'ansi Fault is the northeast segment of the Longmenshan Central Fault.Along the above two faults,we make geological and geomorphologic mapping of Tuguanpu,Da'an and Hujiaba regions,where the Qingchuan Fault runs through the Tuguanpu and Da'an area,and Chaba-Lin'ansi Fault runs through the Hujiaba area.Based on the field investigation,there are five terraces in the northeast Longmenshan area along the major rivers.The height above the river of T1 terrace is about 3~5m,and the formation time is Holocene.The heights of T2 and T3 terraces are 10m and 30~35m above the river,and the deposition time of alluvium and diluvium is Late Pleistocence.The remnant of T4 terrace's sediment covers on some hills,with the height above the river of about 60~70m.In the remnant,granite cobble and sandstone cobbles have been air slaked,these gravels have the shapes only.T5 terrace's height is about 90m,the sediment on it has been eroded.Qingchuan Fault and Chaba-Lin'ansi Fault were strongly active faults in the times before T3 and after T4 formed.Some fault grooves were formed on T4 or T5 terrace,they have 30~180m in width,and 8~20m in depth.The vertical displacement of T4 terrace's gravels is 10~15m.Fault groove didn't form on T3 terrace,or the terrace height on a fault wall is consistent with other fault wall.At some places,T3 terrace's gravels overlie the fault zone.
The late Pleistocene aeolian loess distributes widely in the loess tableland area.It has obvious features and is directly related with faulting.By the observation,measurement and dating to three typical sections at Xiaobaopo,Qiaogou and Zhongdicun,this paper obtained the activity parameters of the Lintong-Chang an Fault since the late Pleistocene and the age stratigraphic sequence of the tablelands of Bailuyuan,Shaolingyuan and Henglingyuan.Research results show that the Bailuyuan tableland has experienced
The Lintong-Chang'an Fault zone locates in the middle part of Cenozoic Weihe depression.It is the boundary fault controlling the Lishan diamond block and Xi'an sag.The landforms are obviously different between the sides of the fault,and the geomorphic forms are stepped fault scraps and loess scraps.In the paper,by field geological survey to the Zhongdi Village,Wangjiabian Village and Qiaogou profiles on the Lintong-Chang'an Fault,and in combination with the dating data of regional loess and paleosol profile(An Zhi-sheng and Sun Jian-zhong),the fault is studied in order to explore the times of its latest activity and the characteristic of its late Quaternary movement.The fault strikes NE as a whole and is characterized with tensile vertical movement.The fault obviously offset the first paleosol layer S1 in loess stratum,indicating that it is still active since late Pleistocene epoch.But most fault displacements are less than 2m,the slip rate is low,and the activity level is higher in the northern and central segments than that in the southern segment of the fault.Regarding that the Lintong-Chang'an Fault consists of several secondary faults,its whole activity should be much higher than the local slip rate of the fault we have derived.The fault displacements show an increasing trend with depth and the slip rates calculated using the dating data of different strata are almost the same.So perhaps,the fault is mainly dominated by vertical creep-slip since the late of middle Pleistocene epoch.
Lintong-Chang'an Fault is an important boundary fault between Lishan uplift and Zhouzhi-Huxian depression in Weihe basin.By the field survey to the natural gullies,the earth fetching areas,and the excavated slope and chasm for road foundation,we discovered 40 outcrops of the Lintong-Chang'an Fault.According to the measurements of dislocation of the various periods' paleosoil horizons,we get the Quaternary dislocation distribution of the fault,which shows that the fault dislocation in the middle segment is the biggest,so is its activity along this segment.