Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
SURFACE RUPTURE OF THE FEBRUARY 6, 2023 MW7.5 ELBISTAN EARTHQUAKE IN TURKEY
YU Jing-xing, REN Zhi-kun, ZHANG Hui-ping, LI Chuan-you, WANG Shi-guang, GONG Zheng, ZHOU Xiao-cheng, XU Yue-ren, LIANG Peng, MA Zi-fa, LI Jun-jie
SEISMOLOGY AND GEOLOGY    2024, 46 (6): 1263-1279.   DOI: 10.3969/j.issn.0253-4967.2024.06.003
Abstract166)   HTML29)    PDF(pc) (13905KB)(126)       Save

On February 6, 2023, two destructive earthquakes struck southern and central Turkey and northern and western Syria. The epicenter of the first event(MW7.8)was 37km west-northwest of Gaziantep. The earthquake had a maximum Mercalli intensity of Ⅻ around the epicenter and in Antakya. It was followed by a MW7.7 earthquake nine hours later. This earthquake was centered 95km north-northeast from the first one. There was widespread damage and tens of thousands of fatalities. In response to these catastrophic events, in March 2023, a seismic scientific expedition led by China Earthquake Administration(CEA)was promptly organized to investigate the surface ruptures caused by these earthquakes. Here, we focus on the surface ruptures of the second earthquake, known as the Elbistan earthquake. The post-earthquake field survey revealed that the Elbistan earthquake occurred on the East Anatolian fault zone's northern branch(the Cardak Fault). This event resulted in forming a main surface rupture zone approximately 140km long and a secondary fault rupture zone approximately 20km long, which is nearly perpendicular to the main rupture.

We combined the interpretation of high-resolution satellite imagery and geomorphic investigations along the fault to determine the fault geometry and kinematics of the second earthquake event. The Elbistan earthquake formed a main surface rupture zone approximately 140km long, which strikes in an east-west direction along the Cardak Fault. The main rupture zone starts from Göksun in the west and extends predominantly eastward until the western end of the Sürgü Fault. It then propagates northeast along the southern segment of the Malatya fault zone. The entire Cardak Fault and the Malatya fault zone's southern segment are considered seismic structures for this earthquake. The overall surface rupture zone exhibits a linear and continuous distribution. Secondary ruptures show a combination of left-lateral strike-slip or left-lateral oblique-thrust deformation. Along the rupture zone, a series of en echelon fractures, moletracks, horizontal fault striations, and numerous displaced piercing markers, such as mountain ridges, wheat fields, terraces, fences, roads, and wheel ruts, indicate the predominance of pure left-lateral strike-slip motion for most sections. The maximum measured horizontal displacement is(7.6±0.3)m. According to the empirical relationship between the seismic moment magnitude of strike-slip faulting earthquakes and the length of surface rupture(SRL), a main rupture zone of 140km in length corresponds to a moment magnitude of approximately 7.6. Based on the relationship between the seismic moment magnitude and the maximum coseismic displacement, a maximum coseismic displacement of(7.6±0.3)m corresponds to a moment magnitude of about 7.5. The magnitudes derived from the two empirical relationships are essentially consistent, and they also agree with the moment magnitude provided by the USGS. Besides the main surface rupture zone, a secondary fault rupture zone extends nearly north-south direction for approximately 20km long. Unfortunately, due to the limited time and traffic problem, we did not visit this north-south-trending secondary fault rupture zone.

According to the summary of the history of earthquakes, it is evident that the main surface rupture zone has only recorded one earthquake in history, the 1544 MS6.8 earthquake, which indicates significantly less seismic activity compared to the main East Anatolian Fault. Moreover, the “earthquake doublet” will inevitably significantly impact the stress state and seismic hazard of other faults in the region. Seismic activity in this area remain at a relatively high level for years or even decades to come. The east-west striking fault, which has not been identified on the published active fault maps at the western end of the surface rupture zone, and the north-east striking Savrun Fault, which did not rupture this time, will experience destructive earthquakes in the future. It remains unknown why the east-west striking rupture did not propagate to the Sürgü Fault this time. More detailed paleoearthquake studies are needed to identify whether it is due to insufficient energy accumulation or because this section acts as a barrier. If the Sürgü Fault, about 40km long, was to rupture entirely in the future, the magnitude could reach 7 based on the empirical relationship.

Considering the distribution of historical earthquakes along the East Anatolian fault zone, as well as the geometric distribution of the surface ruptures from the recent “earthquake doublet” and the surrounding active faults, it is believed that the future earthquake hazards in the northeastern segment of the East Anatolian fault zone, the northern segment of the Dead Sea Fault, and the Malatya Fault deserve special attention.

Table and Figures | Reference | Related Articles | Metrics
ACTIVITY PERIOD, FORMATION MECHANISM AND TECTONIC SIGNIFICANCE OF THE KALAYU’ERGUN FAULT IN THE WESTERN KUQA DEPRESSION
SHEN Bai, ZHANG Zhi-liang, REN Zhi-kun, LIU Jin-rui
SEISMOLOGY AND GEOLOGY    2023, 45 (6): 1247-1264.   DOI: 10.3969/j.issn.0253-4967.2023.06.001
Abstract290)   HTML42)    PDF(pc) (5216KB)(199)       Save

As the NW-trending dextral strike-slip fault on the northern margin of the Tarim Basin, the Kalayu’ergun Fault defines the western boundary between the western Kuqa Depression and Wensu Bulge. It holds immense importance to understand the deformation occurring within the Kuqa Depression. However, there is still ongoing debate regarding the length, activity time and formation mechanism of the Kalayu’ergun Fault. In this study, a comprehensive investigation was conducted, incorporating sub-surface geophysical data, high-resolution remote sensing satellite images, and the findings of previous researchers. The results demonstrate that the Kalayu’ergun Fault cuts off the Awate anticline in the north, and to the south, it extends near the southern flank of the North Kalayu’ergun anticline but does not reach the Middle Kalayu’ergun anticline. The total extension of the fault is estimated to be approximately 40km. And the minimum of the fault strike-slip distance is estimated by the sum of the tectonic shortening of the North Kalayu’ergun anticline and the shortening absorbed by the strata on the northern flank of the Awate anticline through drag, which amounts to about 4.1-4.3km. Additionally, the Kalayu’ergun Fault has been active since its formation in the early Pliocene, but its activity intensity has been weakened obviously. The activity of the Kalayu’ergun Fault corresponds to the deformation time of the North Kalayu’ergun anticline, which is consistent with the deformation time determined using the same structural sedimentary constraints. This indicates that the North Kalayu’ergun anticline was formed under the combined action of near north-south compressional and horizontal shear stresses. The development of this transverse fault is synchronous with the overthrust structures on both sides and is developed in synchrony with the strong uplift of the southern Tian Shan orogenic belt since the late Cenozoic. The formation of the Kalayu’ergun Fault can be affected not only by the differences in the basement nature on both sides but also closely related to the difference in the thickness of the gypsum salt layer. The former resulted in variations in horizontal shortening on both sides of the fault, leading to the tearing of the Cenozoic sedimentary cover. The latter, which under the action of the extrusion stress, influenced the generation and evolution of salt-overlying beds, and then influenced the formation of the fault. In addition, the existence of prior salt structures, also known as salt diapirs, may have also played an important role in the formation of the fault. As the boundary fault in the western part of the Kuqa Depression, the Kalayu’ergun Fault is responsible for accommodating crustal shortening on both sides and even in the whole eastern and western parts of the Kuqa Depression. As a result, the shortening of the Kuqa Depression gradually decreased from east to west. Furthermore, the Kalayu’ergun Fault also had significant impacts on geomorphology, as it controls and modifies the landscape in the southern Tian Shan foreland basin. In the meanwhile, the Kalayu’ergun Fault creates favorable conditions for the transportation and accumulation of oil and gas resources.

Table and Figures | Reference | Related Articles | Metrics
A COMPARATIVE STUDY OF SOURCE EFFECT BASED ON MINI-MULTICHANNEL SEISMIC PROFILE IN MARINE ACTIVE FAULT DETECTION
YI Hu, ZHAN Wen-huan, MIN Wei, WU Xiao-chuan, LI Jian, FENG Ying-ci, REN Zhi-kun
SEISMOLOGY AND GEOLOGY    2022, 44 (2): 333-348.   DOI: 10.3969/j.issn.0253-4967.2022.02.004
Abstract487)   HTML8)    PDF(pc) (8062KB)(116)       Save

The neotectonic activity is intense in the Taiwan Straits and the coastal area of South China. This region is one of the earthquake-prone areas of the world. In history, earthquakes of magnitude 6-7 occurred repeatedly in this region with a high recurrence rate. Therefore, this area has always been the focus of seismicity research and coastal earthquake prevention and disaster reduction. The exploration of active faults is the basis for seismic zoning, but the detection and identification of active faults in sea area are more difficult because of the coverage of sea water, which leads to a large number of “blind areas” in marine fault exploration for a long time. Seismic exploration methods are economical, suitable and efficient in detecting active faults in the sea area. This study compares the detection effect of different seismic sources.
In this study, geophysical exploration of active faults was carried out in the southeast Fujian uplift zone in the Taiwan Straits. A mini-multichannel seismic profile of GI gun source and sparker source at the same location was selected for comparative analysis and illustration. Five reflection interfaces(T1—T4, Tg)were interpreted on the GI gun profile, and five sets of seismic sequences(A—E)were classified. Six reflection interfaces(T'1, T1—T4, Tg)were interpreted on the sparker source profile, and six sets of seismic sequences(A—D and E1—E2)were classified. Three basement faults and two shallow faults with small vertical extension were found, which are active since the late Pleistocene. Among them, the scale of fault F1 is large, the displacement of the basement fault F1 is 51ms, and the overall displacement of (T1—T4) in the sediments is 35ms. Faults F2—F5 are located on the continental side of fault F1 and can be combined into grabens and horsts in forms, which are inferred to be the associated faults of Fault F1. It’s found that basement faults can be identified by both GI gun profile and sparker source profile, while the small faults can only be identified by the sparker profile. At the same time, the depth of upper breakpoint on the sparker profile is shallower, and the latest fault activity can be traced back to the Holocene. The locations and geometrical shapes of the three basement faults are similar on the two profiles, but there are imaging differences in the formation shapes around the faults and the distribution patterns of the secondary faults due to the influence of resolution. The similarity of fault detection results shows the effectiveness of the two methods, while the difference of profile imaging shows the necessity of combined detection in practical work.
According to the comparison of the two kinds of data, the sparker profile reveals a finer shallow structure than the GI gun profile does, and the GI gun profile can obtain a clearer basement structure. Based on the fusion results of the two kinds of data, the structural attributes of fault F1 are further analyzed and explained in detail in this paper, and the Fault F1 is the result of the reactivation of a basement pre-existing fault in the late Pleistocene and is a depression-boundary fault with an activity pattern of extensional normal faulting, and it is considered in this paper to be part of the South China Binhai fault zone. Therefore, it is necessary to attach importance to the combination of multiple detection methods in marine seismic zoning and marine seismic hazard assessment in order to obtain more detailed fault information.

Table and Figures | Reference | Related Articles | Metrics
CHARACTERISTICS OF LATE QUATERNARY ACTIVITY OF THE SOUTHERN RIYUESHAN FAULT
ZHANG Chi, LI Zhi-min, REN Zhi-kun, LIU Jin-rui, ZHANG Zhi-liang, WU Deng-yun
SEISMOLOGY AND GEOLOGY    2022, 44 (1): 1-19.   DOI: 10.3969/j.issn.0253-4967.2022.01.001
Abstract864)   HTML116)    PDF(pc) (22131KB)(752)       Save

Due to the collision between the Indian plate and the Eurasian plate, the Tibetan plateau has experienced violent uplift and strong intraplate deformation inside the plateau, which has a great impact on the tectonic evolution of the surrounding areas. The northeastern edge of the Tibetan plateau is the forefront of the northeastward expansion of the Tibetan plateau, which is the ideal place to study the deformation of the plateau as well as the far-field deformation associated with continental collision between the Eurasia and India plates. In recent years, scholars have gained a certain understanding of the characteristics of late Quaternary tectonic activity in the northeast margin of Tibetan plateau. Within the northeastern margin of Tibetan plateau, there are two major fault systems: One is the near EW-trending left-lateral strike-slip fault system, including the Kunlun, Haiyuan and western Qinling faults, the other one is the NNW-trending right-lateral strike-slip fault system, including the Elashan and Riyueshan faults. They are sub-parallel to each other. Since the Riyueshan Fault is one of the major right-lateral strike-slip faults in the northeastern margin of Tibetan plateau, its activity is of great significance for understanding the plateau expansion. Previous studies mainly focused on its northern part which is believed to be active during Holocene. However, its southern part is believed to be active during late Pleistocene, but not active since Holocene. Therefore, there are little studies focusing on the late Quaternary activities of the southern part of the Riyueshan Fault. Hence, our understanding about the characteristics of the late Quaternary activity is insufficient. During our preliminary field survey along the southern Riyueshan Fault, we found distinct deformation of Holocene landforms, such as the young alluvial fan, terrace risers and channels, which indicate its late Quaternary activity. In this study, we firstly analyze the fault geometry of the southern Riyueshan Fault based on high-resolution Superview-1 remote sensing images and carry out field verification. Based on fault geometry characteristics, fault strike orientation etc., we divided the southern Riyueshan Fault into two segments from north to south. One is the Guide segment(generally trending in NW 20°)and the other is the Duohelmao segment(generally striking in NS). During our field investigation, we found two typical sites for slip rate studies, the Rixiaolongwa site on the Guide segment and the Niemari site on the Duohemao segment, respectively. We collected high-resolution images using UAV, and then generated high-resolution DEM of these two sites. By measuring the offsets and corresponding dating results of multi-level terrace risers, we obtained the displacements of the three-level and two-level terraces at Rixiaolongwa and Niemari site, respectively. Then we collected the OSL and 14C samples on different terrace risers to constrain the age of each terrace. In the Rixiaolongwa area, the corresponding offsets of T1, T2 and T3 terraces are(26.3±3.1)m, (32.7±7.1)m and(38.6±8)m, and the age sequence is(7840±30)a BP, (9 350~10 700)a BP and(11.9±1.3)ka BP, respectively. In the Nimari area, the corresponding offsets of T1 and T2 terraces are(6.3±0.7)m and(9.7±1.7)m, and the ages are(2 860±30)a BP and(3 460±30)a BP, respectively. By applying Monte Carlo method, we obtained the corresponding slip rates of(3.37+0.55/-0.68)mm/a and(2.69+0.41/-0.38)mm/a for the Guide and Duohemao segment, which is comparable to the previously suggested slip rate of northern Riyueshan Fault. Finally, we discussed the role of the Riyueshan Fault in the tectonic deformation of northeastern Tibetan plateau.

Table and Figures | Reference | Related Articles | Metrics
ZHANG Zhi-liang, LIU Jin-rui, ZHANG Hao-bo, ZHANG Zhong-bao, HA Guang-hao, MIN Wei, NIE Jun-sheng, REN Zhi-kun
SEISMOLOGY AND EGOLOGY    2021, 43 (6): 1351-1367.   DOI: 10.3969/j.issn.0253-4967.2021.06.001
Abstract1044)   HTML208)    PDF(pc) (3722KB)(691)       Save

As the key area of interaction between land and sea, continental shelf is important for the tectonic evolution of continent, sea-land change, sea level eustacy and climate change. Due to the limits of different methods, the understanding of the chronology and potential geological information of the sediments on the continental shelf is not enough. The South China Sea, as the largest marginal sea of the West Pacific, is not only one of the most active areas of marine sedimentation in the world, but also the typical region of the interaction between land and sea. As the main sedimentary area of the East Asia, the South China Sea has received increasing academic research attention. At present, the researches mostly focus on the deep-sea sediments because they are continuous and can record stable signals, even though the relative slow deposition and low resolution. Comparatively, the shallow continental shelf deposits with faster sedimentary rate and higher resolution can provide important geological materials for studying the high-resolution chronology and paleoenvironment. However, the sedimentary signals recorded by the continental shelf sediments are unstable and even missing due to the turbulence of the sedimentary environment of the continental shelf. There are relatively few studies on the continental shelf sediments of the South China Sea, especially the high-resolution chronology of cores, thus limiting the understanding of tectonic and climate evolution of the South China Sea. In order to better constrain the geological chronology of the Late Pleistocene continental shelf sediments in northern South China Sea, study the paleoenvironmental signals in the continental shelf sediments and discuss the driving mechanism of the climate changes in East Asia and provide the chronological framework for the study of marine active tectonics in the South China Sea, the comparison between magnetic susceptibility and Marine Oxygen Isotope based on microscopic paleonotological fossils and carbon isotopic age(14C)was studied on the Core DG in this paper. Additionally, the results of sediments color and pollens were used to study the paleoclimatic implications. The results of magnetic susceptibility suggest that the chronology of the sediments of Core DG can be constrained from MIS 1 to MIS 9, with the age of the bottom being about 300ka. The relative high and low values of magnetic susceptibility correspond to interglacial and glacial periods, respectively. This is consistent with the paleoclimatic signals evidenced by the changes of pollen and color parameters in the DG core sediments. Therefore, we suggest that the magnetic susceptibility of continental shelf sediments can be affected by the changes of climate. During glacial periods, the relative cold weather, shallow water and increased transportation distance of the sediments resulted in the enhanced oxidation and the formation of minerals with weak magnetic susceptibility(such as hematite), thus the magnetic susceptibility decreased and the redness increased in the sediments. However, during interglacial periods, the relative warm and wet climate, together with the decreased transportation distance of the sediments, led to the formation of minerals with strong magnetic susceptibility(such as magnetite), thus the magnetic susceptibility enhanced significantly and the redness decreased in the sediments. Therefore, the variations of the magnetic susceptibility in the continental shelf sediments in the northern part of the South China Sea can reflect the glacial-interglacial cycles in the East Asia since the late Pleistocene. In conclusion, as a relative dating method used in the unconsolidated sediments in the late Quaternary, the comparison between magnetic susceptibility and Marine Oxygen Isotope is applicative and reliable in constraining the chronology of the Late Pleistocene continental shelf sediments in northern South China Sea, thus providing a new reference for studying and correlating the continental shelf sediments, which can be used reasonably in the Quaternary chronology.

Table and Figures | Reference | Related Articles | Metrics
NEW DISCOVERY OF XIARIHA FAULT ZONE AROUND DULAN AREA, QINGHAI PROVINCE AND ITS TECTONIC IMPLICATIONS
HA Guang-hao, REN Zhi-kun, LIU Jin-rui, LI Zhi-min, LI Zheng-fang, MIN Wei, ZHOU Ben-gang
SEISMOLOGY AND GEOLOGY    2021, 43 (3): 614-629.   DOI: 10.3969/j.issn.0253-4967.2021.03.009
Abstract829)   HTML    PDF(pc) (19276KB)(339)       Save
The deformation pattern in the northeastern margin of Tibetan plateau is characterized by NE compression, clockwise rotation and eastward extrusion, forming the NNE trending dextral strike-slip faults which further divide the region into several sub-blocks. The deformation of Qaidam secondary block is dominant by northwestward extrusion and rotation, which is controlled by the Elashan and East Kunlun faults. However, the deformation style of Dulan area, the junction of these two faults, remains unclear. We discovered a new active fault zone with a length of 60~70km west to Elashan Fault during our recent field geological survey around Dulan area, named Xiariha fault zone(XFZ), which is a dextral strike-slip fault zone trending NW, consisting of the Xiariha and Yingdeerkang faults. According to the remote sensing interpretation and field investigation, it is found that the Xiariha fault zone showed distinct linear characteristics, reverse scarp, sag pond and ridge dislocation on the satellite images and displaced multi-levels of alluvial fans and river terraces. According to previous studies, the exposed age of T1 terraces is Holocene in the Elashan area, which is located at east of Dulan. During the field investigation, we used the unmanned aerial vehicle(UAV)to get the fine geomorphology features along the XFZ. Also, to define the active era, we tried to find the fault section of the XFZ that could provide the information of the contact between the fault and late Quaternary strata. Based on the high-resolution DEM obtained by UAV, the offset of T1 is about 2.5m, indicating its activity in Holocene compared with the Elashan area. Along the XFZ, the fault displaced late Quaternary strata revealed on the section. The geomorphic features and fault section show that the XFZ is a late Pleistocene to Holocene active fault. The Dulan area is located at the convergence of East Kunlun Fault and Elashan Fault, the southeastern end of Qaidam secondary block, which is affected by the regional NE and SW principal compressive stress and shear stress. Under this circumstance, the Qaidam block is experiencing extrusion and rotation and there are a series of NW-trending dextral strike-slip faults parallel to the Elashan Fault and EW-trending sinistral strike-slip faults parallel to the East Kunlun Fault, such as Reshui-Taosituo River Fault, developed in the Dulan area. Therefore, we suggest that the Xiariha Fault and the nearly EW trending, Holocene sinistral Reshui-Taosituo River Fault adjust the extrusion rotation deformation jointly at the southeast end of the Qaidam block under the control of the Elashan Fault and the East Kunlun Fault, respectively. Meanwhile, the new discovery of Xiariha Fault and its activity in Holocene is not only of great significance to understand the regional tectonic deformation model, but also leads to a great change in the understanding of regional seismic risk because of its capabliliby of generating strong earthquakes. Therefore, it is urgent to carry out further research work in this area, improve the understanding of regional strain distribution mode, and provide reference for regional seismic safety issues.
Reference | Related Articles | Metrics
NEW DISCOVERY OF RESHUI-TAOSTUO RIVER FAULT IN DULAN, QINGHAI PROVINCE AND ITS IMPLICATIONS
LI Zhi-min, REN Zhi-kun, LIU Jin-rui, HA Guang-hao, LI Zheng-fang, WANG Bo, WANG Lin-jian
SEISMOLOGY AND GEOLOGY    2020, 42 (1): 18-32.   DOI: 10.3969/j.issn.0253-4967.2020.01.002
Abstract628)   HTML4)    PDF(pc) (13963KB)(200)       Save

The 40km-long, NEE trending Reshui-Taostuo River Fault was found in the southern Dulan-Chaka highland by recent field investigation, which is a strike-slip fault with some normal component. DEM data was generated by small unmanned aerial vehicle(UAV)on key geomorphic units with resolution<0.05m. Based on the interpretation and field investigation, we get two conclusions: 1)It is the first time to define the Reshui-Taostuo River Fault, and the fault is 40km long with a 6km-long surface rupture; 2)There are left-handed dislocations in the gullies and terraces cut by the fault. On the high-resolution DEM image obtained by UAV, the offsets are(9.3±0.5)m, (17.9±1.5)m, and(36.8±2)m, measured by topographic profile recovery of gullies. The recovery measurements of two terraces present that the horizontal offset of T1/T0 is(18.2±1.5)m and the T2/T1 is (35.8±2)m, which is consistent with the offsets from gullies. According to the historical earthquake records, a M53/4 earthquake on April 10, 1938 and a MS5.0 earthquake on March 21, 1952 occurred at the eastern end of the surface rupture, which may be related to the activity of the fault. By checking the county records of Dulan and other relevant data, we find that there are no literature records about the two earthquakes, which is possibly due to the far distance to the epicenter at that time, the scarcity of population in Dulan, or that the earthquake occurred too long ago that led to losing its records. The southernmost ends of the Eastern Kunlun Fault and the Elashan Fault converge to form a wedge-shaped extruded fault block toward the northwest. The Dulan Basin, located at the end of the wedge-shaped fault block, is affected by regional NE and SW principal compressive stress and the shear stress of the two boundary faults. The Dulan Basin experienced a complex deformation process of compression accompanying with extension. In the process of extrusion, the specific form of extension is the strike-slip faults at each side of the wedge, and there is indeed a north-east and south-west compression between the two controlling wedge-shaped fault block boundary faults, the Eastern Kunlun and Elashan Faults. The inferred mechanism of triangular wedge extrusion deformation in this area is quite different from the pure rigid extrusion model. Therefore, Dulan Basin is a wedge-shaped block sandwiched between the two large-scale strike-slip faults. Due to the compression of the northeast and southwest directions of the region, the peripheral faults of the Dulan Basin form a series of southeast converging plume thrust faults on the northeast edge of the basin near the Elashan Fault, which are parallel to the Elashan Fault in morphology and may converge with the Elashan Fault in subsurface. The southern marginal fault of the Dulan Basin(Reshui-Taostuo River Fault)near the Eastern Kunlun fault zone is jointly affected by the left-lateral strike-slip Eastern Kunlun Fault and the right-lateral strike-slip Elashan Fault, presenting a left-lateral strike-slip characteristic. Meanwhile, the wedge-shaped fault block extrudes to the northwest, causing local extension at the southeast end, and the fault shows the extensional deformation. These faults absorb or transform the shear stress in the northeastern margin of the Tibet Plateau. Therefore, our discovery of the Dulan Reshui-Taostuo River Fault provides important constraints for better understanding of the internal deformation mode and mechanism of the fault block in the northeastern Tibetan plateau.
The strike of Reshui-Taostuo River Fault is different from the southern marginal fault of the Qaidam Basin. The Qaidam south marginal burial fault is the boundary fault between the Qaidam Basin and the East Kunlun structural belt, with a total length of ~500km. The geophysical data show that Qaidam south marginal burial fault forms at the boundary between the positive gravity anomaly of the southern East Kunlun structural belt and the negative gravity anomaly gradient zone of the northern Qaidam Basin, showing as a thrust fault towards the basin. The western segment of the fault was active at late Pleistocene, and the eastern segment near Dulan County was active at early-middle Pleistocene. The Reshui-Taostuo River Fault is characterized by sinistral strike-slip with a normal component. The field evidence indicates that the latest active period of this fault was Holocene, with a total length of only 40km. Neither remote sensing image interpretation nor field investigation indicate the fault extends further westward and intersects with the Qaidam south marginal burial fault. Moreover, it shows that its strike is relatively consistent with the East Kunlun fault zone in spatial distribution and has a certain angle with the burial fault in the southern margin of Qaidam Basin. Therefore, there is no structural connection between the Reshui-Taostuo River Fault and the Qaidam south marginal burial fault.

Table and Figures | Reference | Related Articles | Metrics
THE LATE QUATERNARY ACTIVITY AND FORMATION MECHANISM OF BAOERTU FAULT ZONE, EASTERN TIANSHAN SEGMENT
REN Guang-xue, LI Chuan-you, WU Chuan-yong, WANG Si-yu, ZHANG Hui-ping, REN Zhi-kun, LI Xin-nan
SEISMOLOGY AND GEOLOGY    2019, 41 (4): 856-871.   DOI: 10.3969/j.issn.0253-4967.2019.04.004
Abstract516)   HTML    PDF(pc) (10379KB)(236)       Save
Influenced by the far-field effect of India-Eurasia collision, Tianshan Mountains is one of the most intensely deformed and seismically active intracontinental orogenic belts in Cenozoic. The deformation of Tianshan is not only concentrated on its south and north margins, but also on the interior of the orogen. The deformation of the interior of Tianshan is dominated by NW-trending right-lateral strike-slip faults and ENE-trending left-lateral strike-slip faults. Compared with numerous studies on the south and north margins of Tianshan, little work has been done to quantify the slip rates of faults within the Tianshan Mountains. Therefore, it is a significant approach for geologists to understand the current tectonic deformation style of Tianshan Mountains by studying the late Quaternary deformation characteristics of large fault and fold zones extending through the interior of Tianshan. In this paper, we focus on a large near EW trending fault, the Baoertu Fault (BETF) in the interior of Tianshan, which is a large fault in the eastern Tianshan area with apparent features of deformation, and a boundary fault between the central and southern Tianshan. An MS5.0 earthquake event occurred on BETF, which indicates that this fault is still active. In order to understand the kinematics and obtain the late Quaternary slip rate of BETF, we made a detailed research on its late Quaternary kinematic features based on remote sensing interpretation, drone photography, and field geological and geomorphologic survey, the results show that the BETF is of left-lateral strike-slip with thrust component in late Quaternary. In the northwestern Kumishi basin, BETF sinistrally offsets the late Pleistocene piedmont alluvial fans, forming fault scarps and generating sinistral displacement of gullies and geomorphic surfaces. In the bedrock region west of Benbutu village, BETF cuts through the bedrock and forms the trough valley. Besides, a series of drainages or rivers which cross the fault zone and date from late Pleistocene have been left-laterally offset systematically, resulting in a sinistral displacement ranging 0.93~4.53km. By constructing the digital elevation model (DEM) for the three sites of typical deformed morphologic units, we measured the heights of fault scarps and left-lateral displacements of different gullies forming in different times, and the result shows that BEFT is dominated by left-lateral strike-slip with thrust component. We realign the bended channels across the fault at BET01 site and obtain the largest displacement of 67m. And we propose that the abandon age of the deformed fan is about 120ka according to the features of the fan. Based on the offsets of channels at BET01 and the abandon age of deformed fan, we estimate the slip rate of 0.56mm/a since late Quaternary. The Tianshan Mountains is divided into several sub-blocks by large faults within the orogen. The deformation in the interior of Tianshan can be accommodated or absorbed by relative movement or rotation. The relative movement of the two sub-blocks surrounded by Boa Fault, Kaiduhe Fault and BETF is the dominant cause for the left-lateral movement of BETF. The left-lateral strike-slip with reverse component of BETF in late Quaternary not only accommodates the horizontal stain within eastern Tianshan but also absorbs some SN shortening of the crust.
Reference | Related Articles | Metrics
USING UNMANNED AERIAL VEHICLE PHOTOGRAMMETRY TECHNOLOGY TO OBTAIN QUANTITATIVE PARAMETERS OF ACTIVE TECTONICS
AI Ming, BI Hai-yun, ZHENG Wen-jun, YIN Jin-hui, YUAN Dao-yang, REN Zhi-kun, CHEN Gan, LIU Jin-rui
SEISMOLOGY AND GEOLOGY    2018, 40 (6): 1276-1293.   DOI: 10.3969/j.issn.0253-4967.2018.06.006
Abstract566)   HTML    PDF(pc) (11950KB)(313)       Save
With the development of photogrammetry technology and the popularity of unmanned aerial vehicles (UAVs)technology in recent years, using UAV photogrammetry technology to rapidly acquire high precision and high resolution topographic and geomorphic data on the fault zone has gradually become an important technical means. This paper first summarizes the basic principle and workflow of a new digital photogrammetry technology, SfM (Structure from Motion), which is simple, efficient and low cost. Using this technology, we conducted aerial image acquisition and data processing for a typical fault landform on the northern of Caka Basin in Qinghai. The digital elevation model (DEM)with 6.1cm/pix resolution is generated and the density of point cloud is as high as 273 points/m2. The coverage area is 0.463km2. Further, the terrain and slope data parallel to the fault direction are extracted by topographic analysis method, and combined with the contour map and the slope diagram generated by the DEM, a fine interpretation and quantitative study of complex multilevel geomorphic surfaces is carried out. Finally, based on the results of sophisticated interpretation of geomorphology, we got the vertical displacements of the T1 terrace to the T3 terrace as (1.01±0.06)m, (1.37±0.13)m and (3.10±0.11)m, and the minimum vertical displacements of the T4 terrace and the T5 terrace as (3.77±0.14)m and (5.46±0.26)m, respectively, through the topographic profile data extracted by DEM. Such vertical displacement parameters are difficult to obtain directly by traditional remote sensing images, which shows the great application prospect of UAV photogrammetry technology in the quantitative study of active tectonics.
Reference | Related Articles | Metrics
APPLICATION OF DEM GENERATION TECHNOLOGY FROM HIGH RESOLUTION SATELLITE IMAGE IN QUANTITATIVE ACTIVE TECTONICS STUDY: A CASE STUDY OF FAULT SCARPS IN THE SOUTHERN MARGIN OF KUMISHI BASIN
WANG Si-yu, AI Ming, WU Chuan-yong, LEI Qi-yun, ZHANG Hui-ping, REN Guang-xue, LI Chuan-you, REN Zhi-kun
SEISMOLOGY AND GEOLOGY    2018, 40 (5): 999-1017.   DOI: 10.3969/j.issn.0253-4967.2018.05.004
Abstract628)   HTML    PDF(pc) (7434KB)(320)       Save
Traditional method to generate Digital Elevation Model (DEM)through topographic map and topographic measurement has weak points such as low efficiency, long operating time and small range. The emergence of DEM-generation technology from high resolution satellite image provides a new method for rapid acquisition of large terrain and geomorphic data, which greatly improves the efficiency of data acquisition. This method costs lower compared with LiDAR (Light Detection and Ranging), has large coverage compared with SfM (Structure from Motion). However, there is still lack of report on whether the accuracy of DEM generated from stereo-imagery satisfies the quantitative research of active tectonics. This research is based on LPS (Leica Photogrammetry Suit)software platform, using Worldview-2 panchromatic stereo-imagery as data source, selecting Kumishi Basin in eastern Tianshan Mountains with little vegetation as study area. We generated 0.5m resolution DEM of 5-km swath along the newly discovered rupture zone at the south of Kumishi Basin, measured the height of fault scarps on different levels of alluvial fans based on the DEM, then compared with the scarp height measured by differential GPS survey in the field to analyze the accuracy of the extracted DEM. The results show that the elevation difference between the topographic profiles derived from the extracted DEM and surveyed by differential GPS ranges from -2.82 to 4.87m. The shape of the fault scarp can be finely depicted and the deviation is 0.30m after elevation correction. The accuracy of measuring the height of fault scarps can reach 0.22m, which meets the need of high-precision quantitative research of active tectonics. It provides great convenience for rapidly obtaining fine geometry, profiles morphology, vertical dislocations of fault and important reference for sites selection for trench excavation, slip rate, and samples. This method has broad prospects in the study of active tectonics.
Reference | Related Articles | Metrics
SEISMOTECTONICS OF THE 8 AUGUST 2017 JIUZHAIGOU EARTHQUAKE AND THE THREE-DIMENSIONAL FAULT MODELS IN THE SEISMIC REGION
LU Ren-qi, XU Xi-wei, CHEN Li-chun, CHEN Gui-hua, YAO Qi, SUN Jian-bao, REN Jun-jie, REN Zhi-kun, XU Chong, WEI Zhan-yu, TAN Xi-bin, DONG Shao-peng, SHI Feng, WU Xi-yan
SEISMOLOGY AND GEOLOGY    2018, 40 (1): 1-11.   DOI: 10.3969/j.issn.0253-4967.2018.01.001
Abstract613)   HTML    PDF(pc) (4673KB)(1200)       Save
On 8 August 8 2017, an MS7.0 earthquake occurred in Jiuzhaigou County, Sichuan Province. Field geological investigations did not find any co-seismic surface rupture in the epicenter area, implying that the seismogenic structure is likely a hidden active fault. Based on the results of the relocated aftershocks, the seismogenic fault was simulated and characterized using the SKUA-GOCAD software. The three-dimensional model of the seismogenic fault was preliminarily constructed, which shows that the main shock of the Jiuzhaigou MS7.0 earthquake occurred at the sharp bending area of the fault surface, similar to the geometry of the active fault that generated several major earthquakes in the Songpan area during 1973-1976. Our study suggests that high seismicity of this area may be closely related to the inhomogeneous geometry of the fault surface. In this work, we collected the historical earthquakes of M ≥ 6.5, and analyzed the geometric and kinematic features of the active faults in the study area. A three-dimensional fault model for the 10 main active faults was constructed, and its limitation in fault modeling was discussed. It could provide evidence for analyzing the seismotectonics of historical earthquakes, exploring the relationships between earthquakes and active faults, and predicting major earthquakes in the future.
Reference | Related Articles | Metrics
APPLICATION OF SFM PHOTOGRAMMETRY METHOD TO THE QUANTITATIVE STUDY OF ACTIVE TECTONICS
BI Hai-yun, ZHENG Wen-jun, ZENG Jiang-yuan, YU Jing-xing, REN Zhi-kun
SEISMOLOGY AND GEOLOGY    2017, 39 (4): 656-674.   DOI: 10.3969/j.issn.0253-4967.2017.04.003
Abstract754)   HTML    PDF(pc) (8744KB)(372)       Save
High-precision and high-resolution topographic data are the basis of quantitative study of active tectonics. The appearance and rapid development of photogrammetry method provide an economical and effective technical means for obtaining high precision terrain data. Compared with traditional measurement methods, the photogrammetry method can be carried out in a wide range without being limited by the ground visibility conditions, and the measurement cost is also relatively low. Especially in recent years, with the rapid development of computer vision theory and efficient automatic feature matching algorithm, a 3D reconstruction technique called "Structure from Motion"(SfM)was introduced into the photogrammetry method, greatly improving the automation of the photogrammetry method. This paper mainly introduces the basic principle and the development of photogrammetry method, and also summarizes the application of photogrammetry method in the study of active tectonics, and finally demonstrates the great application potential of photogrammetry method in the quantitative study of active tectonics by displaying a specific application example.
Reference | Related Articles | Metrics
3-D LASER SCANNER(LIDAR): A NEW TECHNOLOGY FOR ACQUIRING HIGH PRECISION PALAEOEARTHQUAKE TRENCH INFORMATION
ZHENG Wen-jun, LEI Qi-yun, DU Peng, CHEN Tao, REN Zhi-kun, YU Jing-xing, ZHANG Ning
SEISMOLOGY AND GEOLOGY    2015, 37 (1): 232-241.   DOI: 10.3969/j.issn.0253-4967.2015.18
Abstract558)      PDF(pc) (3160KB)(895)       Save

LiDAR, as a newly developed surveying technology in recent decades, has been widely used in engineering survey, protection of cultural relics and topographic measurement, and it has also been gradually introduced to studies of tectonic activities. Although the digital photography technology has been used in the study of palaeoearthquake, the information would be still acquired by traditional geological sketch from trenches. Due to the limitation of photography itself, it is difficult to overcome the distortion of information. With its high information content, accuracy, convenience, safety and easy operation, LiDAR, as a new technology, broadens the access to data and information for palaeoearthquake study.

Reference | Related Articles | Metrics
A NEW METHOD FOR DETERMINING SLIP RATES OF STRIKE-SLIP FAULT ASSOCIATED WITH LATERAL EROSION OF ACCUMULATED OFFSET
REN Zhi-kun, ZHANG Zhu-qi, CHEN Tao, WANG Wei-tao
SEISMOLOGY AND GEOLOGY    2014, 36 (4): 1020-1028.   DOI: 10.3969/j.issn.0253-4967.2014.04.007
Abstract902)      PDF(pc) (1377KB)(896)       Save

Fault slip rate is one of the most important subjects in active tectonics research, which reveals the activity and seismic potential of a fault. Due to the improvement of dating precision with the development of dating methods, Holocene geological markers, even the young markers of thousands or hundreds years old, are widely used in fault slip rate calculation. Usually, in strike-slip fault slip rate calculation, there are two types of uncertainties. The first is correspondence of the offset and accumulation time; the second is the lateral erosion of the accumulated offset. In this paper, we suggest that the effect of lateral erosion of the accumulated offset should be removed. We also propose a new method for determining slip rate of strike-slip fault—the differential method. According to analyses of river terrace evolution and displacements accumulation, terrace heights (relative height above river), corresponding ages and measured offsets on the terraces are correlated to each other. We could use the terrace height, corresponding ages and the measured offsets to calculate the offsets that could be used to obtain the fault slip rate. Usually, the heights, ages and offsets of at least three terrace levels are needed in this method. If the terrace height is graded in order, the lateral erosion to each terrace is almost the same. Consequently, direct difference of offset and corresponding ages of the terraces could be used to calculate the fault slip rate. This kind of differential method could avoid the uncertainties from the lateral erosion in fault slip rate determination. By applying the differential method, we got the revised slip rates of 4.7~8.8mm/a on the Altyn Tagh and Kunlun Faults. These low slip rates could fit previous geodetic and geological fault slip rates, shortening rates as well as the millennial recurrence intervals of strong earthquakes along the major segments of these faults.

Reference | Related Articles | Metrics
LANDSLIDES TRIGGERED BY THE 2013 MINXIAN-ZHANGXIAN, GANSU PROVINCE MS 6.6 EARTHQUAKE AND ITS TECTONIC ANALYSES
XU Chong, XU Xi-wei, ZHENG Wen-jun, MIN Wei, REN Zhi-kun, LI Zhi-qiang
SEISMOLOGY AND GEOLOGY    2013, 35 (3): 616-626.   DOI: 10.3969/j.issn.0253-4967.2013.03.015
Abstract1112)      PDF(pc) (7043KB)(3816)       Save

On July 22,2013,an earthquake of MS 6.6 occurred at the boundary between Minxian County and Zhangxian County,Gansu Province of China. Many landslides were triggered by the earthquake and the landslides were of various types,mainly in falls,slides,and topples occurring on loess cliffs,and also including soil deep-seated coherent landslides,large-scale soil avalanches,and slopes with cracks. Most of the landslides were distributed in an elongated area of 250km2,parallels to the Lintan-Dangchang Fault, with about 40km in length and the largest width of 8km. Landslides occurrence shows obvious difference along the central line of the elongated area,corresponding to different characteristics of different segments of the seismogenic fault. The elongated landslides main distribution area and the location of the epicenter indicate that the direction of the fault rupture propagation is from southeast-east to northwest-west. Finally,two probable reasons causing the horizontal distance of about 10km between the central line of the elongated area and the Lintan-Dangchang Fault are presented.

Reference | Related Articles | Metrics
DISTRIBUTION OF THE RELATED DISASTER AND THE CAUSATIVE TECTONIC OF THE MINXIAN-ZHANXIAN MS6.6 EARTHQUAKE ON JULY 22,2013,GANSU,CHINA
ZHENG Wen-jun, MIN Wei, HE Wen-gui, REN Zhi-kun, LIU Xing-wang, WANG Ai-guo, XU Chong, LI Feng
SEISMOLOGY AND GEOLOGY    2013, 35 (3): 604-615.   DOI: 10.3969/j.issn.0253-4967.2013.03.014
Abstract1314)      PDF(pc) (7338KB)(1000)       Save

On July 22,2013,the Minxian-Zhanxian MS 6.6 earthquake occurred at the central-northern part of the South-North Seismic Belt. In the area,complicated structural geometries are controlled by major strike-slip fault zones,i.e.the Eastern Kunlun Fault and the Northern Frontal Fault of West Qinling. The distribution of related seismic disasters,namely,the ellipse with its major axis trending NWW,is in good accord with the strike of the Lintan-Tanchang Fault. Severe damages in the meizoseismal area of the Minxian-Zhangxian MS 6.6 earthquake are located within the fault zone. So it is considered that the earthquake related damages are closely related to the complicated geometry of the Lintan-Tanchang Fault,and it also indicates that the earthquake is the outcome of joint action of its secondary faults. Based on field investigations,and by integrating the results of previous studies on active tectonics,structural deformation and geophysical data,it can be inferred that the southward extension of the Northern Frontal Fault of West Qinling and the northeastward extrusion of the Eastern Kunlun Fault in the process of northeastward growth of Tibetan plateau are the main source of tectonic stress. Basic tectonic model is provided for strong earthquake generation on the Lintan-Tanchang Fault.

Reference | Related Articles | Metrics
CHARACTERS OF SURFACE DISPLACEMENT DUE TO BLIND CURVED FAULT REVEALED BY NUMERICAL MODELS
ZHANG Zhu-qi, CHEN Tao, REN Zhi-kun, WANG Wei-tao
SEISMOLOGY AND GEOLOGY    2013, 35 (2): 452-460.   DOI: 10.3969/j.issn.0253-4967.2013.02.022
Abstract910)      PDF(pc) (3524KB)(1014)       Save

A possible three-dimensionally highly-curved fault,suspected as the ruptured structure of the Lushan M7.0 earthquake,is revealed by relocated aftershocks. A recent study shows that obvious differences exist between curved fault and straight fault under the ground in regard to dislocation patterns and co-seismic stress responses on the planes ruptured during an earthquake. Infinite half-space dislocation models reveal that the characters of surface displacements due to a curved fault are similar to that from straight reverse fault as a whole. Nevertheless,the horizontal displacements due to slip on a curved fault show closer trend parallel to the direction of regional shortening and higher magnitude than that from a straight fault. Subsequently,the curved fault is suggested to be more capable of transferring horizontal movement of hanging-wall materials in large area. Relative to the case on a straight fault,horizontal displacement in foot-wall area of a curved fault decays more with distance from source fault. On the other hand,the curved fault generates obviously less co-seismic uplift while larger and more extensive surface drop somewhere than the reverse fault or left-lateral reverse fault of the same size but with straight fault planes does. For relatively small magnitude of main shock,it is not easy to determine whether the structure of rupture during Lushan earthquake is highly-curved fault or not due to the sparse observations on co-seismic deformation like GPS.Dense and high-resolution observations should be required to survey the features of focal structure in detail.

Reference | Related Articles | Metrics
THE SURFACE RUPTURE SIGNS OF THE LUSHAN "4.20"|MS 7.0 EARTHQUAKE AT LONGMEN TOWNSHIP, LUSHAN COUNTY AND ITS DISCUSSION
HAN Zhu-jun, REN Zhi-kun, WANG Hu, WANG Ming-ming
SEISMOLOGY AND GEOLOGY    2013, 35 (2): 388-397.   DOI: 10.3969/j.issn.0253-4967.2013.02.017
Abstract1323)      PDF(pc) (6426KB)(1285)       Save

The co-seismic surface rupture signs of the "4.20" Lushan MS7.0 earthquake are found at Longmen Township,Lushan County. The sites of rupture signs have a linear distribution with a 2~3km length and N40°~50°N strike. The maximum shortening of the rupture is about 8cm,uplifting is about 1~2cm. Strike-slip component is not observed,but the dynamic process of the earthquake is characterized by compression from northwest to southeast. The observed co-seismic surface ruptures can be oblique shear-fissure,or thrusting crack,however most of them are extensive fissures,which can be explained by the local extensive stress-field on the top of the thrust bending. Although these ruptures have different geometric shapes or variant mechanic features,they similarly reflect the northwest-southeast compression and the surface lift-bending on the top of a thrusting seismogenic structure. Comparing with Dachuan-Shuangshi Fault(frontal fault)and Dayi-Mingshan Fault(piedmont fault),Lushan-Longmen presumed blind fault is more likely the seismogenic fault,which is also consistent with the results of the Lushan earthquake sequence relocations and the seismic intensity contours. As the seismogenic fault of the Lushan earthquake has surpassed the frontal fault of Longmen Shan,it may be a new-generated tectonics,which implies that it is important to re-evaluate the seismic risk at the piedmont area of the Longmen Shan. However,the conclusions are still very primary and geophysical survey is needed to demonstrate the existence of the Lushan-Longmen presumed blind fault.

Reference | Related Articles | Metrics
STUDY OF PALEOEARTHQUAKES BY COMBINED TRENCH ON ZEMUHE FAULT AROUND DAQINGLIANGZI, XICHANG, SICHUAN
TIAN Qin-jian, REN Zhi-kun, ZHANG Jun-long
SEISMOLOGY AND GEOLOGY    2008, 30 (2): 400-411.  
Abstract2087)      PDF(pc) (4163KB)(1631)       Save
There exist some uncertainties in dating paleoearthquakes.To improve the credibility of determination of the earthquakes,comprehensive analysis of movement patterns,sedimentary environment and micro-topography has been made to investigate the paleoseismic events along the Zemuhe active fault zone.Combined trenches were excavated near Daqingliangzi,which reveal three palaeoearthquakes with ages of 160a,3100a and 5500~8900a,respectively,and a recurrence interva1of about 3000 years.Sedimentary processes related to strike-slip fault type earthquakes are discussed and a sedimentary model is put forward for strike-slip fault on condition that bulges and reverse scarps were formed at hillside area.
Related Articles | Metrics
A PRELIMINARY STUDY ON SEISMOTECTONIC MODEL FOR THE ACTIVE FAULTS IN XINING URBAN AREA
TIAN Qin-jian, LI Zhi-min, ZHANG Jun-long, REN Zhi-kun
SEISMOLOGY AND EGOLOGY    2007, 29 (2): 311-319.  
Abstract1893)      PDF(pc) (1731KB)(1054)       Save
The Xining basin is a Cenozoic basin bounded by the Riyueshan Fault and the Lajishan Fault on the south,the Dabanshan Fault on the north.Controlled by these active boundary faults and under the near NE-oriented compressional stress,fold deformation occurred inside the basin.Several active faults of NE or EW trending were detected.Nevertheless,all of them are small and weakly active.By the study on the relationship between fault and folding,we think that the Huangshuihe Fault and the NW-strike north bank of Huangshuihe Fault are tensional faults developed on the apex of an anticline;the Nanchuanhe Fault is a transverse tear fault resulting from differential folding on the two sides of the fault;and the east bank of Beichuanhe Fault is a compressional fault developed on the core or limb of an syncline.By the balanced cross-section analysis of fold deformation and inversion of gravity anomaly data,we obtained that the depth of detachment plane is about 4~5km.Thus,based on the above data,the seismotectonic model of the Xining urban area is built.We conclude that the faults of the area are the secondary faults related to folding of overburdens and have no potential of producing earthquakes larger than magnitude 6 for their small scale and shallow depth.
Related Articles | Metrics