Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
COSEISMIC DEFORMATION FIELD, SLIP DISTRIBUTION AND COULOMB STRESS DISTURBANCE OF THE 2021 MW7.3 MADUO EARTHQUAKE USING SENTINEL-1 INSAR OBSERVATIONS
HUA Jun, ZHAO De-zheng, SHAN Xin-jian, QU Chun-yan, ZHANG Ying-feng, GONG Wen-yu, WANG Zhen-jie, LI Cheng-long, LI Yan-chuan, ZHAO Lei, CHEN Han, FAN Xiao-ran, WANG Shao-jun
SEISMOLOGY AND GEOLOGY    2021, 43 (3): 677-691.   DOI: 10.3969/j.issn.0253-4967.2021.03.013
Abstract1024)   HTML    PDF(pc) (9842KB)(538)       Save
InSAR coseismic deformation fields caused by the Maduo MW7.3 earthquake occurring on May 22, 2021 were generated using the C-band Sentinel-1A/B SAR images with D-InSAR technology. The spatial characteristics, magnitude of coseismic deformation and segmentation of the seismogenic fault were analyzed. The surface rupture trace was depicted clearly by InSAR observations. In addition, the coseismic slip distribution inversion was carried out constrained by both ascending and descending InSAR deformation fields and relocated aftershocks to understand the characteristics of deep fault slip and geometry of the seismogenic fault. The regional stress disturbance was analyzed based on coseismic Coulomb stress change. The results show that the Maduo MW7.3 earthquake occurred on a secondary fault within the Bayan Har block which is almost parallel to the main fault trace of the Kunlun Fault. According to field investigation, geological data and InSAR surface rupture traces, the seismogenic fault is confirmed to be the Kunlunshankou-Jiangcuo Fault. The rupture length of seismogenic fault is estimated to be~210km. The NWW direction is followed by the overall displacement field, which indicates a left-lateral strike-slip movement of seismogenic fault. The maximum displacement is about 0.9m in LOS direction observed by both ascending and descending InSAR data. The inversion result denotes that the strike of the seismogenic fault is 276°and the dip angle is 80°. The maximum slip is about 6m and the average rake is 4°. The predicted moment magnitude is MW7.45, which is overall consistent with the result of GCMT. An obvious slip-concentrated area is located at the depth of 0~10km. The coseismic Coulomb stress change with the East Kunlun Fault as the receiver fault shows that the Maduo earthquake produced obvious stress increase near the eastern segment of the East Kunlun Fault. Thus the seismic risk increases based on the high interseismic strain rate along this segment, which should receive more attention. In addition, the coseismic Coulomb stress change with the Maduo-Gande Fault as the receiving fault indicates that the Maduo earthquake produced an obvious stress drop near the western part of the Maduo-Gande Fault, which indicates that the Maduo earthquake released the Coulomb stress of the Maduo-Gande Fault, and its seismic risk may be greatly reduced. However, there is a stress loading effect in the intersection area of the Maduo-Gande Fault and the Kunlunshankou-Jiangcuo Fault. Considering that aftershocks of Maduo earthquake will release excess energy, the greater earthquake risk may be reduced.
Reference | Related Articles | Metrics
COSEISMIC DEFORMATION FIELD AND FAULT SLIP MODEL OF THE MW6.0 PAKISTAN EARTHQUAKE CONSTRAINED BY SENTINEL-1A SAR DATA
JIA Rui, ZHANG Guo-hong, XIE Chao-di, SHAN Xin-jian, ZHANG Ying-feng, LI Cheng-long, HUANG Zi-cheng
SEISMOLOGY AND GEOLOGY    2021, 43 (3): 600-613.   DOI: 10.3969/j.issn.0253-4967.2021.03.008
Abstract523)   HTML    PDF(pc) (5284KB)(337)       Save
In the global scale, ten destructive earthquakes with magnitude larger than 7 happen on average each year. Yet the number of small earthquakes with limited or even no damage but recordable by seismographs(magnitude between 2.5 and 4.5)is over one million per year. In between, there are hundreds to thousands of earthquakes with moderate to strong magnitude(magnitude between 5.5 and 6.5)with notable destructiveness. The massive moderate to strong earthquakes are often less noticed or even overlooked, with only very few exceptions which caused human casualties and/or structure damages due to the very shallow focal depths. For medium earthquakes, the traditional seismology means can obtain the source mechanism solution of earthquake, but because of the inherent fuzziness of the source mechanism, it cannot distinguish the fault plane from the auxiliary nodal planes, because earthquakes of this magnitude usually do not produce surface rupture, and the result error is large, so it is not suitable for the study of medium and small earthquakes. It is of fundamental significance to further study the source fault of the moderate earthquakes, and more independent methods other than traditional seismology, such as satellite geodesy are needed. As one of the most applied satellite geodesy technique, interferometry of SAR(InSAR)satellite images are commonly used to obtain coseismic deformation related to earthquakes. InSAR has very high spatial sampling, though the temporal sampling is very low, which is several days to over a month depending on the satellite revisit span. The precision of coseismic deformation by InSAR can reach 2~3cm, which is good enough to obtain the surface deformation caused by a moderate earthquake. It is noted that InSAR coseismic measurements can detect 1-dimensional(1D)deformation along Line-of-Sight(LOS)direction. With multiple observing modes including descending and ascending, the InSAR deformation data is very useful for identifying surface ruptures, and for source fault plane discrimination. As a new geodetic observation technology, InSAR uses the elastic dislocation model to obtain source parameters, and the inversion results of fault parameters and slip distribution are more reliable. On September 24th, 2019, an MW6.0 earthquake hit New Mirpur, Pakistan. The nearest known fault to the epicenter is the Main Frontal Thrust on its south side. We used the Sentinel-1A SAR imagery(TOPS-model)to reconstruct the InSAR coseismic deformation fields generated by the 2019 MW6.0 Pakistan earthquake along the ascending and descending tracks. The ascending and descending deformation fields indicate that coseismic deformation is asymmetric by a trend of NW-SE in the south secondary fault of the Himalayan frontal thrust fault, with a maximum LOS displacement of~0.1m. The structures of ascending and descending deformation are highly consistent with each other, but the LOS displacement of southern side is obviously larger than the northern side. The continuous change of interference fringes between uplift and subsidence areas shows that there is no coherent phenomenon caused by excessively large deformation gradient or surface rupture, which indicates that the seismic fault rupture did not reach to the ground surface. Two initial fault models constrained by InSAR deformation, with a southwest-dipping and northeast-dipping fault, were utilized in the inversion. We finally determined the northeast-dipping fault as the seismogenic fault by joint inversion of ascending and descending observations, combined with tectonic setting. Our fault model suggests that an obvious slip concentrated area is located in the depth of 2~4km, with a peak slip of~0.64m and a mean rake angle of~125°. The north-dipping thrust motion with a small amount of strike-slip component dominated the faulting. The earthquake occurred in the low-dipping subduction zone between the Indian and Eurasian plates. The dip angle of the fault plane is relatively low. When the fault is ruptured, the upper wall thrust southwards and the north wall subducted northwards. Due to the compressional nappe structure, the front end of the upper wall was uplifted and the back end was stretched to become the subsidence area. Seismogenic fault is the south secondary fault of the Himalayan frontal thrust fault inferred from our coseismic fault model and rupture kinematic features. Active faults on the land have caused many large destructive earthquakes, resulting in surface faults and promoting the development of tectonic landforms. The detailed observation of coseismic surface rupture not only provides basic information for understanding the earthquake itself and estimating the earthquake recurrence period, but also helps to interpret the tectonic and geomorphic features in other areas. Since the MW6.0 earthquake in Pakistan in 2019, no studies have been reported yet on this earthquake using InSAR technology, so the study of this earthquake provides a rare opportunity to assess the seismic risk of active thrust faults and to study the seismicity of northern Pakistan.
Reference | Related Articles | Metrics
THE DEFORMATION OF 2020 MW6.0 KALPINTAGE EARTHQUAKE AND ITS IMPLICATION FOR THE REGIONAL RISK ESTIMATES
ZHANG Ying-feng, SHAN Xin-jian, ZHANG Guo-hong, LI Cheng-long, WEN Shao-yan, XIE Quan-cai
SEISMOLOGY AND GEOLOGY    2021, 43 (2): 377-393.   DOI: 10.3969/j.issn.0253-4967.2021.02.008
Abstract586)   HTML    PDF(pc) (8040KB)(176)       Save
The continuous collision between Tian Shan and Tarim Basin causes not only the uplift of mountains, but also the earthquakes across the entire Tian Shan, particularly in the transient zone from mountains to the adjacent basins, where the critical infrastructures and residents are seriously under threat from these earthquake hazards. On 19th January, 2020, an earthquake occurred in the Kalpintage fold thrust belt in the southwest Tian Shan foreland. We call this event the 2020 MW6.0 Kalpintage earthquake, which is the first moderate earthquake captured by modern geodetic measurement techniques. This event therefore provides a rare opportunity to look into the local tectonics and seismic risk in southwest Tian Shan. In this study, we obtained the coseismic deformation of 2020 MW6.0 Kalpintage earthquake from Sentinel-1A SAR and strong motion data, and then inverted its kinematic slip model. We derived the InSAR interferograms from both ascending and descending tracks. Both of them present similar deformation patterns, two deformation peaks over the Kalpintage anticline. That means: 1)The surface deformation is dominated by vertical displacement, and 2)the coseismic rupture plane is highly suspected to be the shallowly dipping decollement at the base of the sediment cover. We got the 3-D displacements of 6 strong motion stations by double integrating the strong motion acceleration signals. The result shows tiny displacement on the strong motion stations, except for the Xikeer station, which locates at the front of the Kalpintage anticline, where the InSAR interferograms are seriously incoherent. Two slip models can equally fit to the ascending and descending InSAR interferograms: One is a strike slip model with strike of N-S, the other is a thrust model with strike of E-W. This ambiguity in the slip models for the MW6.0 Kalpintage earthquake is caused by 1)the extremely small dip angles of the causative fault, 2)the inherent shortcomings of the InSAR measurements i.e. the 1-D measurements along the line of sight, the polar orbiting direction of the SAR satellite, and 3)the serious atmospheric delay due to contrasting topography in southwest Tian Shan. We did not distinguish the two ambiguous models with InSAR data due to the weak constraints of InSAR for this event. However, the two quite different slip models show the same spatial dimension and position beneath the Kalpintage anticline, also the same seismic slip vector moving toward the Tarim Basin. We then presumed the two slip models refer to the same fault plane, the weak decollement at the base of the sediment cover, and its rupture released the compressive strain in this fold and thrust belt in the southwest Tian Shan front. The confusing problem is neither the strike slip model nor the thrust model can explain the displacement derived from strong motion. The simple error estimates show small uncertainty in the strong-motion-derived displacement, but we cannot really know the real errors without the comparison to the collocated continuous GNSS observation. Because of the discrepancy between the strong motion displacement and InSAR-derived slip model, we speculate the inelastic deformation occurred in front of the Kalpintage anticline where thick weak sediments exist. We think this earthquake ruptured the decollements in the lower sediments bounded by the adjacent anticlines, which are uplifted in this event. The MW6.0 Kalpintage earthquake balanced the stress accommodated during the convergence of the Tian Shan and Tarim Basin. We managed to explain all of the ruptures in the southwest Tian Shan by combining the regional tectonic, geophysical data and the available earthquake catalogues with good quality and then estimated the earthquake hazards. The earthquakes, including 1902 MW7.7 karshigar, 1996 MW6.3 Jiashi, 1997—2003 Jiashi sequence and 2020 MW6.0 Kalpintage earthquake, can be explained in one frame, the underthrusting of the Tarim Basin toward the southwest Tian Shan. Our calculation suggests that a MW7.0+ event could be generated around Kalpintage anticline belt if without barriers on the decollements.
Reference | Related Articles | Metrics
STUDY ON CO-SEISMIC DEFORMATION AND SLIP DISTRIBUTION OF THE AKETAO MS6.7 EARTHQUAKE DERIVED FROM INSAR DATA
WEN Shao-yan, SHAN Xin-jian, ZHANG Ying-feng, LIU Yun-hua, WANG Chi-sheng, SONG Chun-yan
SEISMOLOGY AND GEOLOGY    2020, 42 (6): 1401-1416.   DOI: 10.3969/j.issn.0253-4967.2020.06.009
Abstract586)   HTML    PDF(pc) (12363KB)(174)       Save
The Aketao MS6.7 earthquake occurred on November 25, 2016, which was located at the intersection of Gongur extensional system and Pamir frontal thrust. This region is characterized by complex fault structure, high altitude, complex terrain conditions, sparsely populated and few observed data, so the conventional geodetic survey technology is difficult to obtain comprehensive surface deformation information, while InSAR can take advantage of its all-weather, all-day, large-area and high-density continuous monitoring of ground motion. Therefore, this study takes MS6.7 earthquake as the research object to carry out the co-seismic deformation field extraction and fault static slip distribution inversion. Firstly, the co-seismic deformation field was obtained by using ascending and descending data of Sentinel-1A. The results indicate that the interferogram spatial decorrelation is more serious in the north side of fault, which is affected by the steep terrain. The fringes in the south side of fault were distributed as elliptical semi-petal shapes, and the fringes are smooth and clear. The northern and southern part of the fault was asymmetric: The interferogram fringes of the southern part were dense while fewer fringes were formed in the northern part, and the fringes were semi butterfly-shaped on the surface. The horizontal displacements dominated the co-seismic deformation in this event, with magnitude of 12cm in ascending and -21cm in descending. The deformation occurred mainly on the south wall of fault. Based on the right view imaging of Radar, the co-seismic deformation is consistent with the movement features of dextral strike-slip fault and the focal mechanism provided by USGS and GCMT. The cross section of aftershocks after precisely positioning showed that the dip angle of fault is larger above the depth of 15km, which is generally manifested as the shovel-like structure with the dominant tendency of southward dip. By conducting a comprehensive analysis of deformation feature and aftershocks profile, we proposed that the southwest-dipping Muji Fault is the seismogenic fault. Secondly, a large area of continuous deformation images obtained by InSAR technology contains millions of data points and there is a high correlation between them. In order to ensure the calculation efficiency and inversion feasibility in the inversion process, the quadtree sampling method was used to reduce the number of data points and the datasets were finally obtained that can be received by the inversion system on the basis of retaining the original details of the deformation field. The two tracks InSAR datasets which were down-sampled by quadtree method were used to constrain the inversion to retrieve the fault geometry parameters and slip distribution. The single-segment and two-segment static slip distribution on the fault plane based on uniform elastic half space model were constructed during inversion process. The F-test of fitting residuals based on single-segment and double-segment fault model show that the population variance of the two models was significantly different at the confidence level of 95%, and the variance of the double-fault model was smaller. Through the comprehensive analysis of predicted deformation field, residuals and F-test, it is considered that the simulated results of double fault model are better than that of the single, and the observation data can be better interpreted. The result shows that the simulated co-seismic deformation field and its corresponding observed values were consistent in morphology and magnitude, and the correlation between observed and modeled is up to 0.99. In addition, as can be seen from the spatial distribution and frequency histogram of residuals, the overall residual was not large, mainly concentrated in the range of -0.2~0.2cm with the characteristics of normal distribution. However, there were still some larger residuals on the near fault in ascending track, which may be related to the simplified model. There were two patches with significant slip distribution on each segment and the rupture basically reached the surface. The slip was mainly distributed along the downdip range of 0~20km and was about 50km along the fault strike. The rupture reached the surface and the peak slip of 0.7m was at the depth of 9km. The western segment is dominated by the right-lateral strike-slip and the eastern segment is dominated by the right-lateral strike-slip with slightly normal faulting. The seismic moment derived from inversion was 8.81×1018N·m, which is equivalent to MW6.57. The average slip angle obtained by inversion is -175° in the west section and -160° in the east section. The synthetic analysis holds that the source characteristics of the MS6.7 earthquake was characterized by dextral strike-slip with a slightly normal component, which was composed of two sub-seismic events. The western section was basically pure right-lateral strike-slip with a dip angle of 75°, while the eastern was characterized by dextral strike-slip with a small amount of normal component with a dip angle of 55°. The Aketao earthquake occurred on the northern Pamir salient and its tectonic deformation was mainly characterized by crustal shortening, strike-slip and internal extension of the frontal edge observed by GPS. Generally speaking, the Pamir salient was blocked by nearly east-west South Tian Shan in the process of strong northward pushing under the action of NE direction pushing of Indian plate, and “hard and hard collision” occurred between them. The eastern part of Pamir salient extruded eastward along the nearly NS trending Gongur extensional system, and at the same time rotated clockwise, which caused the nearly EW extension since the Late Quaternary. The Aketao earthquake is a tectonic event occurring at Gongur Shan extensional system, which shows that the pushing of the Indian plate in the NE direction is continuously strengthened, and also implies that the internal crustal deformation of the Pamir Plateau is still dominated by extension in EW direction, which is basically consistent with the present observation of GPS.
Reference | Related Articles | Metrics
TWO DIMENSIONAL MODEL ON RELATION BETWEEN THERMAL ANOMALY BEFORE WENCHUAN EARTHQUAKE AND TECTONIC STRESS
ZHU Chuan-hua, SHAN Xin-jian, ZHANG Guo-hong, JIAO Zhong-hu, ZHANG Ying-feng, LI Yan-chuan, QIAO Xin
SEISMOLOGY AND GEOLOGY    2019, 41 (6): 1497-1510.   DOI: 10.3969/j.issn.0253-4967.2019.06.012
Abstract564)   HTML    PDF(pc) (2871KB)(274)       Save
It has been reported that there is thermal anomaly within a certain time and space preceding an earthquake, and previous research has indicated potential associations between the thermal anomaly and earthquake faults, but it is still controversial whether physical processes associated with seismic faults can produce observable heat.Based on rock experiments, some scholars believe that the convective and stress-induced heat associated with fault stress changes may be the cause of those anomalies. Then, did the thermal anomaly before the Wenchuan earthquake induced by the fault stress change?It remains to be tested by numerical simulations on the distribution and intensity of thermal anomalies. For example, is the area of thermal anomaly caused by the fault stress changes before the earthquake the same as the observation?Is the intensity the same?To clarify the above questions, a two-dimensional thermo-hydro-mechanical(THM)finite element model was conducted in this study to simulate the spatial and temporal variations of thermal anomalies caused by the underground fluid convection and rock stress change due to the tectonic stress release on fault before earthquake. Results showed that the simulated thermal anomalies could be consistent with the observed in magnitude and spatio-temporal distribution. Before the Wenchuan earthquake, deformation-related thermal anomalies occurred mainly in the fault zone and its adjacent hanging wall, which are usually abnormal temperature rise, and occasionally abnormal cooling, occurring in the fault zone after the peak temperature rise. In the fault zone, the thermal anomaly is usually greater than the order of 1K of the equivalent air temperature and is controlled by the combined effect of fluid convection and stress change. The temperature increases first and then decreases before the earthquake. In the hanging wall, it's weaker than that of the fault zone, mainly depending on the convection of the fluid. The temperature gradually increases before the earthquake and is dramatically affected by the permeability. Usually, only when the permeability is larger than 10-13m2, can the air temperature rise higher than 1K occur. The results of this study support the view that fluid convection and stress change caused by fault slip before the earthquake can produce observable air temperature anomalies.
Reference | Related Articles | Metrics
COSEISMIC DISPLACEMENT FIELD OF THE WENCHUAN EARTHQUAKE DERIVED FROM STRONG MOTION RECORDS AND APPLICATION IN SLIP INVERSION
LIU Xiao-dong, SHAN Xin-jian, ZHANG Ying-feng, YIN Hao, QU Chun-yan
SEISMOLOGY AND GEOLOGY    2019, 41 (4): 1027-1041.   DOI: 10.3969/j.issn.0253-4967.2019.04.014
Abstract562)   HTML    PDF(pc) (8007KB)(153)       Save
The development of high-rate GNSS seismology and seismic observation methods has provided technical support for acquiring the near-field real-time displacement time series during earthquake. But in practice, the limited number of GNSS continuous stations hardly meets the requirement of near-field quasi-real-time coseismic displacement observation, while the macroseismographs could be an important complement. Compared with high-rate GNSS, macroseismograph has better sensitivity, higher resolution(100~200Hz)and larger dynamic range, and the most importantly, lower cost. However, baseline drift exists in strong-motion data, which limits its widespread use. This paper aims to prove the feasibility and reliability of strong motion data in acquiring seismic displacement sequences, as a supplement to high-rate GNSS.
In this study, we have analyzed the strong-motion data of Wenchuan MS8.0 earthquake in Longmenshan fault zone, based on the automatic scheme for empirical baseline correction proposed by Wang et al., which fits the uncorrected displacement by polynomial to obtain the fitting parameters, and then the baseline correction is completed in the velocity sequence. Through correction processing and quadratic integration, the static coseismic displacement field and displacement time series are obtained. Comparison of the displacement time series from the strong motions with the result of high-rate GPS shows a good coincidence. We have worked out the coseismic displacement field in the large area of Wenchuan earthquake using GPS data and strong motion data. The coseismic displacement fields calculated from GPS and strong motions are consistent with each other in terms of magnitude, direction and distribution patterns. High-precision coseismic deformation can provide better data constraint for fault slip inversion. To verify the influence of strong-motion data on slip distribution in Wenchuan earthquake, we used strong motion, GPS and InSAR data to estimate the stress drop, moment magnitude and coseismic slip model, and our results agreed with those of the previous studies. In addition, the inversion results of different data are different and complementary to some extent. The use of strong-motion data supplements the slip of the fault in the 180km segment and the 270~300km segment, thus making the inversion results of fault slip more comprehensive.
From this result, we can draw the following conclusions:1)Based on the robust baseline correction method, the use of strong motion data, as an important complement to high-rate GNSS, can obtain reliable surface displacement after the earthquake. 2)The strong motion data provide an effective method to study the coseismic displacement sequence, the surface rupture process and quick seismogenic parameters acquisition. 3)The combination of multiple data can significantly improve the data coverage and give play to the advantages of different data. Therefore, it is suggested to combine multiple data(GPS, strong motion, InSAR, etc.)for joint inversion to improve the stability of fault slip model.
Reference | Related Articles | Metrics
USE OF SEISMIC WAVEFORMS AND INSAR DATA FOR DETERMINATION OF THE SEISMOTECTONICS OF THE MAINLING MS6.9 EARTHQUAKE ON NOV.18, 2017
LIU Yun-hua, SHAN Xin-jian, ZHANG Ying-feng, ZHAO De-zheng, QU Chun-yan
SEISMOLOGY AND GEOLOGY    2018, 40 (6): 1254-1275.   DOI: 10.3969/j.issn.0253-4967.2018.06.005
Abstract669)   HTML    PDF(pc) (12957KB)(328)       Save
On November 18, 2017, a MS6.9 earthquake struck Mainling County, Tibet, with a depth of 10km. The earthquake occurred at the eastern Himalaya syntaxis. The Namche Barwan moved northward relative to the Himalayan terrane and was subducted deeply beneath the Lhasa terrane, forming the eastern syntaxis after the collision of the Indian plate and Asian plates. Firstly, this paper uses the far and near field broadband seismic waveform for joint inversion (CAPJoint method)of the earthquake focal mechanism. Two groups of nodal planes are obtained after 1000 times Bootstrap test. The strike, dip and rake of the best solution are calculated to be 302°, 76° and 84° (the nodal plane Ⅰ)and 138°, 27° and 104° (the nodal plane Ⅱ), respectively. This event was captured by interferometric synthetic aperture radar (InSAR)measurements from the Sentinel-1A radar satellite, which provide the opportunity to determine the fault plane, as well as the co-seismic slip distribution, and assess the seismic hazards. The overall trend of the deformation field revealed by InSAR is consistent with the GPS displacement field released by the Gan Wei-Jun's team. Geodesy (InSAR and GPS)observation of the earthquake deformation field shows the northeastern side of the epicenter uplifting and the southwestern side sinking. According to geodetic measurements and the thrust characteristics of fault deformation field, we speculate that the nodal plane Ⅰ is the true rupture plane. Secondly, based on the focal mechanism, we use InSAR data as the constraint to invert for the fine slip distribution on the fault plane. Our best model suggests that the seismogenic fault is a NW-SE striking thrust fault with a high angle. Combined with the slip distribution and aftershocks, we suggest that the earthquake is a high-angle thrust event, which is caused by the NE-dipping thrust beneath the Namche Barwa syntaxis subducted deeply beneath the Lhasa terrane.
Reference | Related Articles | Metrics
STUDY ON THE SEISMOGENIC FAULT CHARACTERSTICS OF 2016 MW5.9 MENYUAN EARTHQUAKE BASED ON Sentinel -1A DATA
ZHENG Bo-wen, GONG Wen-yu, WEN Shao-yan, ZHANG Ying-feng, SHAN Xin-jian, SONG Xiao-gang, LIU Yun-hua
SEISMOLOGY AND GEOLOGY    2018, 40 (4): 872-882.   DOI: 10.3969/j.issn.0253-4967.2018.04.011
Abstract553)   HTML    PDF(pc) (6771KB)(297)       Save
In this paper, we processed and analyzed the Sentinel-1A data by "two-pass" method and acquired the surface deformation fields of Menyuan earthquake. The results show the deformation occurred mainly in the south wall of fault, where uplift deformation is dominant. The uplift deformation is significantly larger than the subsidence and the maximum uplift of ascending and descending in the LOS is 6cm, 8cm respectively. Meanwhile, based on the Okada model, we use the ascending and descending passes data as constraints to invert jointly the fault distribution and source parameters through constructing fault model of different dip directions. The optimum fault parameters are:The dip is 43°, the strike is 128°with the mean rake of 85°. The maximum slip is about 0.27m. The inverted seismic moment M0 is 1.13×1018N·m, and the moment magnitude MW is 5.9. The SW-dipping Minyue-Damaying Fault is possibly the seismogenic fault, based on the comprehensive analysis of the focal mechanisms, aftershocks relocation results and the regional tectonic background. The focus property is dominated by thrust movement with a small amount of dextral strike-slip component. The earthquake is the result of local stress adjustment nearby the Lenglongling Fault under the background of northeastward push and growth of Tibet Plateau.
Reference | Related Articles | Metrics
TWO-DIMENSIONAL WHOLE CYCLE SIMULATION OF SPONTANE-OUS RUPTURE OF THE 2008 WENCHUAN EARTHQUAKE USING THE CONTINUOUS-DISCRETE ELEMENT METHOD
ZHAO You-jia, ZHANG Guo-hong, ZHANG Ying-feng, SHAN Xin-jian, QU Chun-yan
SEISMOLOGY AND GEOLOGY    2018, 40 (1): 12-26.   DOI: 10.3969/j.issn.0253-4967.2018.01.002
Abstract724)   HTML    PDF(pc) (6553KB)(658)       Save
The May 12, 2008 MS7.9 Wenchuan earthquake is ranked as one of the most devastating natural disasters ever occurred in modern Chinese history. The Longmenshan Fault(LMSF) zone is the seismogenic source structure, which consists of three sub-parallel faults, i.e., the Guanxian-Jiangyou Fault(GJF) in the frontal, the Yingxiu-Beichuan Fault(YBF) in the central fault and the Wenchuan-Maowen Fault(WMF) in the back of the LMSF. In this study, geological survey and seismic profiles are used to constrain the faults geometry and medium parameters. Three visco-elastic finite element models of the LMSF with different main faults are established. From the phase of interseismic stress accumulation to coseismic stress release and postseismic adjustment, the Wenchuan earthquake is simulated using Continuous-Discrete Element Method(CDEM). Modeling results show that before the 2008 Wenchuan earthquake, the GJF becomes unstable due to the interaction between its unique fault geometry and the tectonic stress loading. In the fault geometry model, the GJF is the most gently dipped fault among the three faults, which in return makes it having the smallest normal stress and the greatest shear stress. The continuous shear stress loading finally meets the fault failure criteria and the Wenchuan earthquake starts to initiate on the GJF at the depth of 15~20km. The earthquake rupture then propagated to the YBF. At the same time, due to the GJF and YBF rupture, the interseismic stress accumulation has been greatly reduced, causing the WMF failed to rupture. Although the stress accumulation in the WMF has been reduced significantly after the earthquake, yet it has not been released completely, which means that the WMF likely has with high seismic risk after the 2008 Wenchuan earthquake. We also find that the stress perturbation caused by gently dipping segment of the fault can promote the passive rupture in the steeply dipping segment, making the upper limit of dip angles larger than traditional assumption.
Reference | Related Articles | Metrics
THE COSEISMIC SOURCE SLIP AND COULOMB STRESS TRIGGERING OF 2015 NEPAL GORKHA MW7.9 AND KODARIMW7.3 EARTHQUAKE BASED ON InSAR MEASUREMENTS
ZHANG Ying-feng, ZHANG Guo-hong, SHAN Xin-jian, WEN Shao-yan
SEISMOLOGY AND GEOLOGY    2017, 39 (1): 104-116.   DOI: 10.3969/j.issn.0253-4967.2017.01.008
Abstract957)      PDF(pc) (5675KB)(769)       Save

According to the structure of the Himalayan orogenic belt, a low-angle antilistric thrust-slip fault model is used to simulate the ramp on the rupture portion of the Main Himalayan Fault. Based on descending Alos -2 and Sentinal -1 data, we invert for the coseismic slip models of the Gorkha earthquake and its largest aftershock, Kodari earthquake. In contrast to the inversion using Alos -2 or Sentinal -1 separately, the joint inversion of both data sets has stronger constraint for the deep slip and can obtain more details in Gorkha earthquake. The rupture depth obtained by joint inversion can be as deep as 24km underground, cutting across the locking line to the transition of locked and the creeping zone. The largest slip is as large as 4.5m appearing 17km underground and the dip angle is between 3°and 10°. Gorkha and Kodari earthquakes have the similar focal mechanisms, both of which are mainly thrusting, and yet some right-lateral slip component in Gorkha earthquake. The inversion results reveal that slip models of the Nepal mainshock and its largest aftershock are complementary in space and the Kodari earthquake occurs in the gaps of slip in Gorkha earthquake. The epicenter of the Kodari earthquake is just right in the transitive zone of the positive and negative Coulomb stress change, where the Coulomb stress change can reach 0.4MPa. We thus argue that Kodari earthquake has been triggered by the Gorkha earthquake.

Reference | Related Articles | Metrics
THREE-DIMENSIONAL DEFORMATION OF THE 2008 GAIZE EARTHQUAKES RESOLVED FROM INSAR MEASUREMENTS BY MULTIPLE VIEW ANGLES AND ITS TECTONIC IMPLICATIONS
WANG Jia-qing, ZHANG Guo-hong, SHAN Xin-jian, ZHANG Ying-feng
SEISMOLOGY AND GEOLOGY    2016, 38 (4): 978-986.   DOI: 10.3969/j.issn.0253-4967.2016.04.014
Abstract754)      PDF(pc) (4002KB)(962)       Save

The 2008 Gaize MW6.4 earthquake,occurring on the tensional active fault zone located between Lhasa terrane and Qiangtang terrane in the interior of Tibet is a typical normal-faulting event.In this paper,we resolve the three-dimensional coseismic displacement fields of the earthquakes using a least-square iterative approximation solution with a priori knowledge,according to the theoretical basis that InSAR measurements are extremely insensitive to N-S component.Results show that the boundary dividing the two sides of the main-shock fault is very clear in the vertical movement,and two remarkable subsidence centers can be observed on the hanging wall,while amplitude of the west one (-48.9cm) is larger than the east (-41.4cm),but the maximum uplift on the footwall is only 5cm.In addition to some northward movement with amplitude less than 5cm around the aftershock fault,the north-south deformation field suggests an overall southward movement.The three-dimensional results indicate that the induced surface movement is predominantly vertical and mostly occurred on the upper side,while there are obvious east-west separation and eastward rotation in the horizontal plane.The full vectors are consistent with simulated deformation field with the RMSE less than 6cm,so the research demonstrates the feasibility of the method to recover precise three-dimensional deformation field.On the whole,the three-dimensional deformation field coincides with the tensile fracture characteristics of Gaize earthquakes,and the tectonic stress background of coeval east-west extension and north-south shortening.

Reference | Related Articles | Metrics