-
INTERPRETATION AND ANALYSIS OF THE FINE FAULT GEO-METRY BASED ON HIGH-RESOLUTION DEM DATA DERIVED FROM UAV PHOTOGRAMMETRIC TECHNIQUE: A CASE STUDY OF TANGJIAPO SITE ON THE HAIYUAN FAULT
- SUN Wen, HE Hong-lin, WEI Zhan-yu, GAO Wei, SUN Hao-yue, ZOU Jun-jie
-
2019, 41(6):
1350-1365.
DOI: 10.3969/j.issn.0253-4967.2019.06.003
-
Asbtract
(
)
HTML
PDF (8150KB)
(
)
-
References |
Related Articles |
Metrics
Fault-related tectonic geomorphologic features are integrated expressions of multiple strong seismological events and long-term surface processes, including crucial information about strong earthquake behavior of a fault. It's of great significance to identify the strong seismic activity information from faulted landscapes, which include the date and sequence of the seismic activities, displacements, active fault features, for studying the seismic rupture process, predicting the future seismic recurrence behavior and evaluating the seismic hazard of the fault.
However, due to the restriction of measuring techniques and the subsequent poor quality of the acquired data, it has been difficult to accurately extract such information from complex tectonic landforms to study active faults for a long time. Recently, "small Unmanned Aerial Vehicle(sUAV)" photogrammetric technique based on "Structure from Motion(SfM)" provides a cost-efficient and convenient access to high-resolution and high-accuracy "digital elevation models(DEMs)" of tectonic landforms.
This paper selects the Tangjiapo area at the Haiyuan Fault to conduct data collection, in which the structural and geomorphic features are well preserved. Using a small quadrotor unmanned aerial vehicle(Inpire 2), we collect 1598 aerial photographs with a coverage area of 0.72km2. For calibrating the accuracy of the aerial data, we set 10 ground control points and use differential-GPS to obtain the spatial coordinates of these control points. We use model software Agisoft PhotoScan to process these digital pictures, obtaining high-resolution and high-accuracy DEM data with the geographic information, in which data resolution is 2.6cm/pix and the average density of point cloud is 89.3 point/m2. The data with these accuracy and resolution can fully show the real geomorphic features of the landform and meet the requirements for extracting specific structural geomorphic information on the surface.
Through the detailed interpretation of the tectonic landforms, we identify a series of structures associated with the strike-slip fault and divide the alluvial fan into four stages, named s1, s2, s3, and s4, respectively.Wherein, the s1 is the latest phase of the alluvial fan, which is in the extension direction of the Haiyuan Fault and there isn't any surface fracture, indicating that the s1 was formed after the M8.5 Haiyuan earthquake in 1920. The rupture zone on the s2 fan is composed of varied kinds of faulting geomorphologic landforms, such as a series of en echelon tension-shear fractures trending 270°~285°, fault scarps and seismic ridges caused by the left-lateral motion of the seismic fault. In addition, a number of field ridges on the s2 fan were faulted by the 1920 Haiyuan M8.5 earthquake, recording the co-seismic displacements of the latest earthquake event. Relatively speaking, the surface rupture structure of the s3 fan is simple, mainly manifested as linear fault scarp with a trend of 270°~285°, which may indicate that multiple earthquakes have connected the different secondary fractures. And a small part of s4 fan is distributed in the southwest of the study area without fault crossing.
Furthermore, we measured the horizontal displacements of river channels and vertical offsets of fault scarps. The faulted ridge on the s2 fan and faulted gully on the s3 fan provide good linear markers for obtaining the fault left-lateral dislocation. We used the graphical dislocation measurement software LaDiCaoz developed based on Matlab to restore the gully position before the earthquake by comparing the gully morphology on both sides of the fault, and then determined the horizontal offset of s2, which is(4.3±0.4)m and that of s3 is(8.6±0.6)m. In addition, based on the DEM data, we extracted the fault scarp densely along the fault strike, and obtained the vertical offset of s2, which is(4.3±0.4)m and that of s3 is(1.79±0.16)m.
Moreover, we detect slope breaks in the fault scarp morphology. For compound fault scarps generated by multiple surface rupture earthquakes, there are multiple inflection points on the slope of the topographic section, and each inflection point represents a surface rupture event. Therefore, the slope break point on the scarp becomes an important symbol of multiple rupture of the fault. The statistical result shows that the slope breaks number of s2 is 1 and that of s3 is 2. Based on the analysis of horizontal displacements of river channels and vertical offsets of fault scarps as well as its slope breaks, two surface rupturing events can be confirmed along the Tangjiapo area of the Haiyuan Fault. Among them, the horizontal and vertical displacements of the older event are(4.3±0.95)m and(0.85±0.22)m, respectively, while that of the latest event are(4.3±0.4)m and(0.95±0.14)m, which are the coseismic horizontal and vertical offsets of the 1920 Haiyuan earthquake.
These recognitions have improved our cognitive level of the fine structure of seismic surface rupture and ability to recognize paleoearthquake events. Therefore, the high-resolution topographic data obtained from the SfM photogrammetry method can be used for interpretation of fine structure and quantitative analysis of microgeomorphology. With the development of research on tectonic geomorphology and active tectonics toward refinement and quantification, this method will be of higher use value and practical significance.