The Bolokenu-Aqikekuduke Fault(Bo-A Fault)is a large-scale right-lateral strike-slip fault zone, which starts in Kazakhstan in the west, enters China along the NW direction, passes eastward through Alashankou, Lake Aibi and the southwestern margin of Turpan Basin, and terminates in the Jueluotage Mountain, with a total length of about 1 000km. At present, researches on the fault mainly focus on the area from Lake Alakol to Jinghe.Through satellite images, it can be found that the Bo-A Fault enters the southwestern margin of the Turpan Basin in the SE direction, and offset various landforms such as river terraces and alluvial fans, forming clear linear features on the surface, which indicates that there have been obvious activities since late Quaternary in this fault section. However, no detailed research has been carried out on the tectonic deformation characteristics of the Bo-A Fault in this area. The active characteristics of the faults in the southwestern margin of the Turpan Basin are studied, and the results are helpful to understand the role of the Bo-A Fault in the Cenozoic tectonic deformation of the Tianshan Mountains.The study area is located in the southwestern margin of the Turpan Basin, where three stages of alluvial-proluvial fans are developed. The first-stage alluvial-proluvial fan is called Fan3, which was formed earlier and its distribution is relatively limited, formed roughly in the early late Pleistocene; The second-stage alluvial-proluvial fan is called Fan2, which is the most widely distributed geomorphological surface in the study area. The geomorphic surface in this period was roughly formed from the late Pleistocene to the early Holocene. The third-stage alluvial-proluvial fan is called Fan1, which belongs to the Holocene accumulation, most of which are located at the outlet of gullies near the mountain passes, forming irregular fan-shaped inclined surfaces.To the west of Zulumutaigou, the fault offset the Fan3 alluvial-proluvial fan, forming dextral dislocation and fault scarp of the gully on the surface. The measurement shows that the amount of the dextral dislocation produced by the fault is between 22m and 40m. The height of the scarp is 3.9~4.2m. The section exposed by the fault shows that the Paleozoic bedrock thrust northward onto the Quaternary gravel layer, and the fault fracture width is about 1m, which reflects that the Bo-A Fault also has a certain thrust component. On the east bank of Zulu Mutaigou, the fault offset the Fan3 alluvial-proluvial fan, and the measurement results show that the offset of the gully is between 46.3m and 70.2m. To sum up, the movement mode of the Bo-A Fault in the study area is dominated by dextral strike-slip.On the Fan2 alluvial-proluvial fan at the northwest of Zulu Mutaigou, there are two secondary faults arranged in a right-step en-echelon pattern, forming high scarps with a height of 1.6~3.9m on the surface. Trench profiles reveal that both faults are SW-dipping thrust faults, thrusting from south to north, and they are preliminarily judged to be formed by the expansion of the Bo-A Fault into the basin.There are mainly three stages of alluvial-proluvial fans developed in the study area. Although no specific dating results have been obtained in this work, we believe that the age of the Quaternary landforms in the study area is the same as that in the Chaiwopu Basin, which is only separated by a mountain. Quaternary geomorphological ages are basically the same. Through geomorphological comparison, we believe that the age of Fan2 alluvial-proluvial fan is 12~15ka, and the age of Fan3 alluvial-proluvial fan is 74ka. It is estimated that the dextral slip rate of the Bo-A Fault is about 1mm/a since the formation of Fan3, and the vertical movement rate of the fault is about 0.13~0.32mm/a since the formation of Fan2.According to GPS observations and geological data, the NS-direction shortening rate in the East Tianshan area can reach 2~5mm/a. Through this study, it can be found that the Bo-A Fault also plays a role in regulating the near-NS-trending compressive stress in the East Tianshan area by accommodating the compression strain inside the Tianshan Mountains mainly through the NWW-directed right-lateral strike-slip motion. In addition, in the study area, the youngest fault scarp is located on the Fan2 alluvial-proluvial fan at the north of the main fault. It is preliminarily judged that the latest activity of the Bo-A Fault has a tendency to migrate from the mountain front to the basin.
Thrust fault is the basic model of crustal deformation and also one of the major structural forms of orogenic belts, indicating the tectonic environment of compression. Most of the catastrophic earthquakes that affect human activity occur within the plates. In the interior of the plate, reverse faults are likely to develop as long as there is compressive stress in the regional sense or under some local tectonic conditions. It is considered that the NS compression resulting from collision of the Indian plate and the Eurasian plate is the main cause for the formation of the present tectonic framework in both north and south sides of Tianshan Mountains. The continuous crustal shortening and thickening has made the Quaternary active structures in the front margins of Tianshan Mountains well developed. Meanwhile, the new nappe structures in front of Tianshan Mountains are also the main sites for the preparation of medium-strong earthquakes in the Tianshan Mountains area, and their seismogenic mode is mostly in the forms of blind fault ramp-decollement plane-surface fault ramps. The northern Tianshan inverse fault-fold belt is located at the junction between the northern foothill of Tianshan Mountains and Junggar Basin, where the Kusongmuqike piedmont fault is located in the south of Jinghe County, and is an important active thrust fault belt in the western northern Tianshan Mountains. In recent ten years, there were many earthquakes with magnitude 5.0 or above occurring in the eastern section of the fault zone. A detailed study of the geometric distribution and tectonic geomorphologic features is helpful to understand the tectonic deformation characteristics and regional strain distribution in the Tianshan area since the late Quaternary. The results of high-resolution remote sensing image interpretation, UAV aerial survey and differential GPS terrain profile survey combined with field geological survey show that the eastern segment of the Kusongmuqike piedmont fault is composed of two secondary reverse faults. Among them, the south branch, the Xinlongkou Fault, is composed of 5 en echelon-arranged sub-faults, with an overall trend of NW, dipping S, steep dip angle, and a length of about 48km. The fault offset the two-stage piedmont alluvial-pluvial fan and 5 river terraces, the activity time of terrace T1/T2 and fan3 is the latest, and the fault scarps are 3.6m to 4.7m high, being the product of concurrent fault activities. The vertical displacement of terrace T3 and T4 is 13.5m and 20.3m, respectively, and the vertical displacement of terrace T5 is roughly the same with that of the surrounding pluvial fan2, which is about 30m. On the fan1, there is no tectonic deformation observed in places where the fault passes through, and the initial landforms are retained on the surface. The north branch, the Hydrographic Station Fault, is distributed in an intermittent manner. The overall strike of the fault is near EW, with a total length of about 44km, and the fault offset multi-stage alluvial-pluvial fans. On the alluvial-pluvial fan of Fan3, two near-parallel normal scarps are developed in the northern margin of the alluvial-pluvial fan, while other faults cut through the alluvial-pluvial fan and the surface gully, forming steep reverse scarps on the surface. According to the cumulative height of the normal scarps, the maximum vertical displacement is 17.2m and the minimum vertical displacement is 0.3m, the scarp height is concentrated between 4.7~9.9m. On the reverse fault scarps, the maximum vertical displacement is 7.8~9.8m, the minimum scarp height is 2.4~3.1m, and the scarp height concentrates between 3.3~9.2m. Several sub-faults are developed scatteredly between the two sets of faults, with scarp heights ranging 0.5~1.0m. As far as the scarp height distribution is concerned, its vertical displacement shows a distribution law of decreasing from west to east. These results may contribute to the further understanding of the strain partitioning pattern in the western part of the northern Tianshan.
On May 22, 2021, an MS7.4 earthquake occurred in Maduo County, Guoluo Prefecture, Qinghai Province, which is the biggest earthquake in mainland China since the 2008 Wenchuan MS8.0 earthquake. It occurred in the Bayan Har block in the northern part of the Qinghai-Tibet Plateau, indicating that the Bayan Har block is still the main area for strong earthquakes activity in mainland China. In order to study the source characteristics and seismogenic structure of the Maduo earthquake, we used the double-difference location method to analyze the spatial distribution of earthquake sequences within 15 days after the mainshock. At the same time, the focal mechanism solutions of 15 aftershocks with MS≥4.0 are also obtained by full-waveform moment tensor inversion. We hope to provide seismological evidences with reference value for the study of the dynamic process of the Madao MS7.4 earthquake and the geological tectonic activities on the northern side of the Bayan Hala block.
The results of moment tensor inversion show that the moment magnitude of the Maduo earthquake is about 7.24, the centroid depth is 13km, and the best double-couple solution is strike 283°, dip 59° and slip -4° for the nodal plane I, and strike 15°, dip 86° and slip -149° for the nodal plane Ⅱ, which indicates a strike-slip earthquake event. According to the strike of the fault and the distribution of aftershocks in the source area, we infer that the nodal plane I, which strikes NWW, is the seismogenic fault plane. The focal mechanism results of 15 aftershocks show that the aftershock sequence is mainly strike-slip type, which is consistent with the main shock. Meanwhile, there are also some other types reflecting the local complex structure. The differences in the direction and type of focal mechanism may reveal changes in the direction and characteristic of the fault from north to south. The azimuth of the P-axis is NE-SWW, and the azimuth of the T-axis is NNW-SSE. Both plunge angles are within 30° and close to horizontal, which shows that the activities of the Maduo earthquake sequence are mainly controlled by the horizontal compression stress field in the northeast-southwest direction. From NWW to SEE, the dip angle of fault plane increases gradually from 77° to 88°, and the northern segment dips to SW.
Based on the results of relocation, moment tensor inversion and geological structure, preliminary conclusion can be drawn that the seismogenic fault of the Maduo earthquake may be the Kunlun Mountain Pass-Jiangcu Fault, which is a left-handed strike-slip fault. At the same time, there are certain segmental differences along the fault. The strike of the northern section is mainly NW, that of the middle section is NWW, and the southern section is near E-W, and the fault plane dips to the southwest with the dip angle increasing gradually from NWW to SEE.
The Fen-Wei rift is composed of a series of Cenozoic graben basins, which extends in an S-shape and strikes mainly NNE. Two distinct types of basins are defined in the Fen-Wei rift. The NEE-striking basins(or basin system) are bounded by active faults of mainly normal slip while the NNE-striking basins are characterized by their dextral strike-slip boundary faults. The adjacent NEE-striking basins(or basin systems) are linked by the arrangement of NNE-striking basins and horsts that is called the linking zone in this study. The segmentation of the Fen-Wei rift shows that the geometry and the activity of different rift segments are varied. The southern and northern rift segments strike NEE and are characterized by tensile movement while the central rift segment strikes NNE with transtensional motion. Previous field surveys show that the ages of the Cenozoic basins in the Fen-Wei rift are old in the southern rift segment, medium in the northern rift segment, and young in the central rift segment. The sizes of linking zones are large in the central rift segment, medium in the northern rift segment, and small in the southern rift segment. In addition, the east tip of Xinding Basin propagates towards NEE along the northern rift segment and the west tip of the basin grows towards NNE, while the shape of Linfen Basin is almost antisymmetric with respect to the Xinding Basin. However, the previous laboratory or numerical simulations cannot explain these features because they didn't pay enough attention to the control of the rift segmentation on the evolution of NEE-striking basins and their linking zones. In this study, based on the previous field studies, we study the fracture process of a clay layer under the segmented dextral transtension of the basement. The spatiotemporal evolution of the deformation field of the clay layer is quantitatively analyzed via a digital image correlation method. The experiment reproduced the main architecture of the Fen-Wei rift. The results show that:(1) The chronological order of basin initiation and the different sizes of linking zones in deferent rift segments are caused by the different obliquity angles(the angle between the rift trend and the displacement direction between the opposite sides of the rift) among the southern, northern and central rift segments.(2) The interaction between adjacent NEE-striking basins leads to the formation of NNE-striking linking zones.(3) The interaction between adjacent rift segments may cause the special distribution of Xinding and Linfen Basins. Thus, we propose that the differences of the Fen-Wei rift segments are mainly controlled by the different obliquity angles. The lack of considering the influences of pre-exiting structures leads to the limited simulation of the details within the southern and northern segments of the Fen-Wei rift. Further studies may improve the model if this is taken into account.
Stick-slip of fault in laboratory accompanies change of temperature. Temperature change is not only concerned with sliding friction, but also with the stress state of the sample. In this article, we use infra-red thermal imaging system as wide-range observation means to study the temperature variation of different stages during the deformation of sample. The rock sample for the experiment is made of granodiorite from Fangshan County with a size of 300mm×300mm×50mm. It is cut obliquely at an angle of 45°, forming a planar fault. Two-direction servo-control system was used to apply load on the sample. The load in both directions was forced to 5MPa and maintained constant (5MPa) in the X direction, then the load in the Y direction was applied by a displacement rate of 0.5μm/s, 0.1μm/s and 0.05μm/s successively. The left and below lateral of the sample were fixed, and the right and top lateral of the sample were slidable when loaded. The experiment results show not only the temperature change from increase to decrease caused by conversion of stress accumulation to relaxation before and after the peak stress, but also opposite variation of temperature increase on fault and temperature decrease in rock during instability stage. Most important of all, we have found the temperature precursor identifying the position of instability through the temperature variation with time along the fault. It shows that rate of temperature increase of instability position keeps relative high value since the stage of strongly off-linear stage, and accelerates in stage of meta-instability. After separating the effect of friction and stress, we found that temperature increase occurs in the rock near the fault instead of on the fault, which means the mechanism of temperature increase is stress accumulation. Temperature of fault at the instability position does not increase, which means the position is locked. We speculate that the position of locked area on fault with high stress accumulation near the fault may be the future instability position. It is of significance of studying temperature variation during stick-slip to the monitoring of earthquake precursors. Heat caused by friction of earthquake needs long time to transfer to the surface and could not be detected as a precursor. While the stress of surface rock near the fault would change as the stress of interior rock changes, which could cause detectable temperature variations. The research purpose of this article is to find special change positions before instability. As the temperature variations are caused by stress and slip of fault, the results are also meaningful to analysis of stress and displacement data related to earthquake precursors.
Coseismic displacement plays a role in earthquake surface rupture, which not only reflects the magnitude scale but also has effect on estimates of fault slip rate and earthquake recurrence intervals. A great historical earthquake occurred in Huaxian County on the 23rd January 1556, however, there was lack of surface rupture records and precise coseismic vertical displacements. It's known that the 1556 Huaxian earthquake was caused by Huashan front fault and Weinan plateau front fault, which are large normal faults in the east part of the southern boundary faults in Weihe Basin controlling the development of the basin in Quaternary. Here, we made a study on three drilling sites in order to unveil the coseismic vertical displacements. It is for the first time to get the accurate coseismic vertical displacements, which is 6m at Lijiapo site of Huashan front fault, 7m at Caiguocun site, and 6m at Guadicun site of Weinan plateau front fault. These coseismic displacements measured based on same layers of drilling profiles both at footwall and hanging wall are different from the results measured by former geomorphological fault scarps. It's estimated that some scarps are related with the nature reformation and the human beings' activities, for example, fluviation or terracing field, instead of earthquake acticity, which leads to some misjudgment on earthquake displacements. Moreover, the vertical displacements from the measurement of geomorphological scarps alone do not always agree with the virtual ones. Hence, we assume that the inconsistency between the results from drilling profiles and geomorphological scarps in this case demonstrates that the fault scarp surface may have been demolished and rebuilt by erosion or human activities.
The Yutian MS7.3 earthquake occurred on February 12, 2014 in Xinjiang Uygur Autonomous Region, China and the epicenter is located in the western part of Altyn Tagh Fault. This is the second M≥7 earthquake following the March 21, 2008 Yutian MS7.3 earthquake in the south of the Tarim Basin. Aftershocks of this Yutian MS7.3 earthquake are distributed mainly along the NE direction, and that in the southwest part of the aftershock area presents a near-NS distribution. Most of the aftershocks including foreshocks (accounting for 85% of the total aftershock sequence) are densely distributed in the southwest of the aftershock zone, the vast majority of strong aftershocks (all of the MS≥5 and 81% magnitude 4 earthquakes)are distributed in this area. Aftershocks of the first day are mainly distributed in this area and in a near-NS distribution. The aftershocks extended from west to east. The authors noted that there occurred several M5~M6 earthquakes in 1982, 2011 and 2012 along the near-NS direction of this Yutian earthquake and this Yutian earthquake filled up the empty section. Based on the regional tectonic environment, earthquake focal mechanism solutions and aftershocks distribution, etc., we analyzed the process of this earthquake and found that the earthquake occurred at the branch fault of Altyn Tagh Fault zone on the south margin of Xiaoerkule Basin. Affected by the tectonic stress of Altyn Tagh Fault zone, Xiaoerkule Basin suffers the local near east-west extension, earthquake rupture occurred first along the near-NS direction, the unlocking of this tectonic position promotes the left-lateral movement of the Altyn Tagh Fault, producing NE-oriented rupture, and stress transferring to the east. This paper also discusses the seismogenic structures of historical earthquakes above MS7 occurring on the Altyn Tagh Fault zone and their impact on the fault zone.
The objective of this paper is to explore the current tectonic activity with satellite remote sensing thermal information by taking a case of the Wenchuan earthquake. Three items are accomplished as follows: 1)the process of evaluation of thermal field before and after Wenchuan earthquake is analyzed. The results indicate that there exist plenty of thermal information associated with the distribution of tectonics in the in-situ land surface temperature field, which is extracted from land surface temperature in which the effects of non-tectonic factors, such as topography, atmosphere and solar radiation are gotten rid of. 2)Combining with measurement of the shallow atmosphere temperature, the quantitative relationship between increment of land surface temperature and crustal stress-strain is preliminarily investigated. Results indicate that the increment generated by the crustal stress may obviously affect the shallow atmosphere temperature. Especially, the temperature-lowering zone has more reliability. There exist some temperature lowering zones along the boundaries of large geological blocks before and after Wenchuan earthquake, which reflects the relatively extensional movement (or stress relaxation) among these corresponding blocks. 3)Based on the co-seismic deformation, the comparative analysis is done between co-seismic deformation and thermal information. Results indicate that the tectonically adjusted area obtained from temperature field is largely accordant with that of co-seismic deformation. This shows that the variation of temperature along the boundaries of large geological blocks within the Tibet Plateau reflects the process of the adjustment of crustal deformation of the Tibet Plateau before and after Wenchuan earthquake. In summary, it is a possible approach to obtain the change of state of crustal stress by using the thermal method.
Identification of short-term and impending precursors, including the signal indicating earthquakes are inevitable, is one of focused issues in research of earthquake prediction. To explore this problem, modeling study of instability on a planar strike-slip fault was performed in the laboratory. It is based on the condition that the stress variation curves at a loading machine can reveal the stress state of the specimen and allow us to recognize its meta-instability stage. In terms of the advantage that the information from the loading machine can be compared with observations to the physical quantity of the sample, this work captures and analyzes the differences of temporal-spatial evolution processes of strain parallel and perpendicular to the fault in the stress linearity-off stage and meta-instability stage. The study suggests that a fault consists of relatively fragile and tough portions; the former usually are weakened first as expressed by pre-slip of the fault, and slow or small earthquakes indicative of beginning of strain release; while the latter become the locality of strain accumulation and fast instability finally, i.e. the future seismic source. The synergism process of a fault is actually a process of interaction between different portions of the fault. It is also a conversion from independent activities of each fault segment to synergism activity. The degree of synergism is an indicator of the stress state. It is based on the assumption that an earthquake results from sudden fast slip on a fault which relies on two primary conditions: one is the fault has a high synergism degree which facilitates connection between fault segments resulting in rapid slip of longer fault segments, and the other is sufficient strain is accumulated at some portions of the fault to overcome resistance of local tough portions on the fault. Usually the synergism process of a fault includes three stages: generation of strain-release patches, expansion and increasing of these patches, and mutual connection of strain-release areas. The first stage occurs when the stress curve deviates from linearity, strain variations of different portions of the fault begin to diverge, resulting in isolated patches of strain release and strain accumulation along the fault. In the second stage, related with the quasi-static instability of early meta-instability, those isolated areas of strain release increase and extend steadily. The third stage is equivalent to the late meta-instability that is a quasi-dynamic instability process when the sections of strain release on the fault accelerate to expand and strain levels of strain-accumulation areas accelerate to rise. The accelerated synergism begins at the time when the quasi-static state transforms into the quasi-dynamic state, of which the expansion mechanism of strain release segments changes, i.e. the expansion of isolated fault segments is replaced by connection between fault segments under interaction. At this time the fault is in a critical state and bound to generate earthquakes sooner or later. As a case study, based on the experimental results above and coupled with temporal-spatial evolution of earthquakes on the Laohushan-Maomaoshan Fault west of the Haiyuan Fault zone, this work analyzes the synergism process of the fault before the M6.2 earthquake on 6 June 2000 in this region.
Recently,the strong earthquakes in China mainland occurred mainly around the Bayanhar block. It is important to monitor the information of ongoing crustal activity at the key tectonic positions. We have developed a set of wireless equipment for measuring the ground temperature in field,and have established a network of measurement of the ground temperature along Xianshuihe Fault. Some changes of temperature were observed before and after the Lushan earthquake on April 20,2013.First of all,an apparent and persistent change of the ground temperature in Kangding appeared,starting from January 31,2013.This temperature variation corresponded with the occurrence of the small earthquakes around the observation station. According to the relationship between the temperature and stress,the abrupt change of ground temperature is essentially the geological stress adjustment. From the viewpoint of geological structures,both Longmengshan Fault and Xianshuihe Fault are the boundary faults of the Bayanhar block,but located at different boundaries,so,Kangding in Xianshuihe Fault is tectonically related to Lushan in Longmengshan Fault. Thus,the temperature change described above would possibly be the precursor of the Lushuan earthquake.
Within almost five years,the 2008 Wenchuan MS 8.0 and 2013 Lushan MS 7.0 earthquakes ruptured the Longmenshan Fault zone successively. The characteristics of earthquakes and their development tendency on this fault zone have been a focus of subject of research. This article attempts to explore some features of seismic preparation process of the 2008 Wenchuan event from temporal-spatial evolution of earthquakes along the Longmenshan Fault zone during more than 40 years.(1)The spatial range of the earthquake preparation,or seismic nucleation,is much smaller than that of co-seismic rupturing. It indicates that the seismic source,probably consisting of some small asperities or barriers,prepared on a finite fault segment can be connected and expand into a large-scale rupture section along the fault when the fast instability occurs at the source.(2)Prior to the 2008 Wenchuan giant shock,its preparation area had experienced a dense distribution of small earthquakes for eight years or more,while no conspicuous slip and deformation were observed on the surface. This implies that the seismogenic fault segment of the Wenchuan event on the Longmenshan Fault was undergoing probably compressive deformation,accompanied with cataclastic process. When the cataclastic deformation of the great-shock source reached a critical state,fault instability occurred along the fault with rapid rupturing. (3)To further study the variations of the main-shock area prior to the event,this article analyzes the temporal-spatial processes of small earthquakes around the main shock since 2004 recorded by a special seismic network in the Zipingpu reservoir. The results indicate that the scope of the seismicity expanding along the fault took place along the fault in October 2005 and October 2006,respectively,in accordance with the time when the reservoir reached its high water level. Among them,the second expanding from October 2006 covered a relatively large area and with relatively big magnitudes,implying great importance for the study of the final instability process of the 2008 Wenchuan huge earthquake. Besides,this paper discusses the correlation of the rupturing process of the 2008 Wenchuan giant event with the geometry of the fault and the reason why the 2013 Lushan earthquake occurred many years after the Wenchuan event rather than immediately following this giant shock like usual big aftershocks. The research results are helpful for understanding of seismogenic processes of major earthquakes of the thrust type.
Shanxi tectonic belt is a historically earthquake-abundant area and the focal distribution of the majority of the strong earthquakes is controlled by the local north-south oriented structures on the tectonic belt. Using the cataclastic analysis method(CAM),we performed an inversion analysis on the stress state of focal mechanism solutions of earthquakes which happened on Shanxi tectonic belt from 1967 to 2010.Results show that spatial distributions of the maximum principal compressive stress axis of Shanxi tectonic belt have changed over time,with two different predominant directions,NW and NE,in different periods of time. When the maximum principal compressive stress axis is oriented in NE direction,the stress state is registered as horizontally shearing and horizontally extension on the north-south and southeast oriented local segments in turn. When the maximum principal compressive stress axis is oriented in NW direction,the stress state of north-south and northeast tectonic segments is primarily registered as horizontally shearing.
Using the cataclastic analysis method, this paper tries to make an analysis on the focal mechanism data of 486 small earthquakes that occurred at the epicenter of the Wenchuan earthquake and its surrounding areas in more than three years before the 2008 Wenchuan earthquake. The result shows that obvious stress change occurred at the seismic source and its surrounding areas around June 2007 before the Wenchuan earthquake, manifested in two high numerical value areas of abnormal stress state. Meanwhile, the formation process of the above areas was accompanied by the drop of stress level of the Longmenshan central fault. The ultimate strong earthquake occurred on the stress gradient belt between the high stress area and the low stress area. The evolution process of stress level before the Wenchuan earthquake indicates that earthquake nucleation phenomenon turned up before the strong earthquake. One result can be inferred that there was an abnormal process of accelerated movement of the whole Bayankala block before the Wenchuan strong earthquake.
The spatial-temporal evolution process of strain field and acoustic emission(AE)events was investigated during the deformation of 5° bend faults,with 96-channels strain acquisition system and 16-channels distributed AE acquisition system in the laboratory.The loading was applied by controlling the Y-displacement and holding the X-load in a biaxial servo-control loading system, and the Y-loading rate was altered by 0.5μm/s,1μm/s,0.5μm/s and 0.1μm/s in sequence.The observation results show that: (1)quasi-periodic stick-slip always occurred under different loading rates, and the smaller the loading rate,the greater the period and stress drop; (2)low energy AE events increased before faults slid,but high energy AE events appeared as faults slid.AE events distributed near the bends and the upper and lower fault segments which were located by arrival time of AE wave.From the AE location results,AE sources mostly scattered in bend zones,and upper and lower fault segments,and the fault instability appeared first near bend point,then the alternative activities happened between upper and lower fault segments.Large instability took place in the lower fault segment,finally; (3)High strain concentration zone located near bend point and fault segment.And it is significantly different that mean strain and maximum shear strain increment changed alternately at the inside and outside of bend during strain accumulation and release stage; (4)Strain observation results illustrate that mean strain release first occurred near the bend,then released in the whole fault.It would be a critical instability condition for a bend fault.The observation to bend faults is important and helpful to investigate fault activity state.
The stick-slip process of pre-cut bending faults with a 5°angle at bending point between the two fault segments is investigated by use of fault displacement measurement,strain tensor analysis and acoustic emission(AE)technique in the laboratory.The dynamic process and corresponding properties of physical evolution are discussed.The experimental results from bending faults show that: 1)A negative relationship was revealed between the logarithms of the stick-slip cycle and the logarithms of loading rate; 2)Under different loading rate,most of instabilities of bending faults are earthquake doublets,and the interval time between the two sub-events are primarily from 100ms to 200ms; 3)For different observational approaches,even if with the same sampling rate,the differences of the coseismic response were observed,such as the significant strain weakening stage indicated by strain measurements,but there was no significant change in fault displacement before fault instability; and 4)AE sources obviously migrated along faults during fault sliding.More dynamic information about fault instability process is needed to know the mechanism of strong earthquakes and the features of aftershocks.