Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
EVIDENCE FOR THE HOLOCENE ACTIVITY OF THE LEIBO FAULT ZONE
ZHANG Guo-xia, SUN Hao-yue, LI Wei, SUN Wen
SEISMOLOGY AND GEOLOGY    2024, 46 (1): 141-161.   DOI: 10.3969/j.issn.0253-4967.2024.01.009
Abstract253)   HTML43)    PDF(pc) (18061KB)(227)       Save

The Yingjing-Mabian-Yanjin tectonic zone(YMYTZ)is an important boundary structure between the southeastern margin of the Tibet Plateau and the Sichuan Basin. It consists of several small-scale secondary faults with different strikes and is generally characterized by the intersections of north-northwest oriented longitudinal faults and nearly east-west oriented transverse faults. The YMYTZ is seismically very active in the late Quaternary and hosted several moderate-strong earthquakes, including two M≥7 earthquakes since 1216AD, namely the 1216 Mahu earthquake and the 1974 Daguanbei earthquake. After the Daguanbei earthquake, several M≥6 earthquakes and hundreds of M≥5 earthquakes occurred along the YMYTZ to date, implying it is a newly generated seismotectonic belt. Even so, the activity of each fault is still unclear, bringing out great uncertainty in understanding the current crustal deformation pattern and in evaluating the regional seismic potential. Specifically, although several M≥6 earthquakes have occurred along the Leibo fault zone in the southern segment of the YMYTZ, the late Quaternary activity of the fault zone has not been well determined due to insufficient work as well as subsequent lack of solid evidence. The Leibo fault zone strikes NE-SW and spreads on the southeast flank of the Chenqiangyan-Shanzhagang anticline. It starts at the Huanglang township near the Mahu Lake, cuts through the Jingkou Mountain, Lianhuashi, and Leibo, and extends southwestwards to the vicinity of Lianlajue. The latest investigation shows that the Leibo fault zone consists of four subparallel right-lateral strike-slip faults named F1—F4 from the north to the south, respectively. These fault branches together constitute a 43km-long and 10km-wide structural belt. Previous paleoseismic work along the Leibo fault zone found that the faults ruptured the late Pleistocene sedimentary layers with their upward terminations covered by the undeformed Holocene deposits, implying it was active in the late Pleistocene and has not been active since the Holocene. However, the ground surface traces of the Leibo fault zone are the most obvious among the faults in the YMYTZ, and recent seismologic studies show strong seismic activity for the Leibo fault zone, bringing out a controversy about whether it is active in the Holocene or not.

To address the late Quaternary activity of the Leibo fault zone, we conducted detailed indoor deformed geomorphic feature interpretation on remote sensing imageries like 2m-resolution GF-2 imagery and high-resolution imageries on Google Earth, and further mapped the fault traces in the field using an unmanned aerial vehicle(UAV)derived digital orthographs and digital surface models(DSM). Based on the geological and geomorphological surveys, two trenches were excavated at Pengjiashan and Luohangou along the northern(F2)and southern(F4)branches of the Leibo fault zone respectively. On the trench walls, surface-rupturing paleoearthquakes were identified for each fault according to criteria for faulting events like cut-and-cover structures, scarps, and colluvial wedges. Subsequently, we collected and dated several radiocarbon samples from the sedimentary layers immediately before and after the rupturing events, and finally carried out stratigraphic sequence calibration using the acquired ages with the OxCal 4.4 program to constrain the timings of the revealed paleoearthquakes.

According to the identification criteria of paleoseismic events, it was revealed 3 paleoearthquakes in the Pengjiashan trench on the northern fault branch(F2)and another 7 rupturing events in the Luohangou trench along the southern fault branch(F4). Radiocarbon sample dating constrain the ages of the paleoearthquakes along F2 to be 21190—20590BC(EP1), 20550—12120BC(EP2), and after 12090BC(EP3), while the latest two paleoseismic events on F4 occurred 9270—5040BC(EL6)and after 5000BC(EL7). Our paleoseismic studies show that the LFZ has experienced several surface-rupturing earthquakes in the Holocene, verifying it is a Holocene active fault zone. Moreover, the ages of the paleoseismic events revealed on two fault branches do not overlap with each other, suggesting they are different paleoearthquakes so that the fault branches in the Leibo fault zone are independent seismogenic structures. By collecting and analyzing the magnitudes of strike-slipping earthquakes that have generated surface ruptures in western China since 1920, it is believed that the minimum magnitudes of the paleoearthquakes determined on the Leibo fault zone are 6.5. Through the empirical relationships between magnitude and surface rupture length, it is estimated that the LFZ has the capability to produce an earthquake with M≥7.

Table and Figures | Reference | Related Articles | Metrics
APPLICATION OF SMALL UNMANNED AERIAL VEHICLE(sUAV)IN THE SELECTION OF SUITABLE SITES IN PALEO-SEISMIC STUDY OF BEDROCK FAULT SURFACES
ZOU Jun-jie, HE Hong-lin, ZHOU Yong-sheng, WEI Zhan-yu, SHI Feng, GENG Shuang, SU Peng, SUN Wen
SEISMOLOGY AND GEOLOGY    2023, 45 (4): 833-846.   DOI: 10.3969/j.issn.0253-4967.2023.04.002
Abstract294)   HTML24)    PDF(pc) (6000KB)(210)       Save

Bedrock normal fault scarps, as classical topographic features and geomorphological markers along mountain range fronts, form in consolidated bedrock due to faulting in extensional settings. They generally preserve more complete records of paleo-earthquakes than fault scarps in unconsolidated sediments. With the development of technologies such as fault surface morphology measurement and terrestrial cosmogenic nuclide dating, bedrock fault planes have become a nice object for paleo-earthquake study in bedrock areas. The reconstruction of paleo-seismic history from a bedrock fault scarp in terms of the times, co-seismic slips and ages by a combination of quantitative morphological analysis, TCNs dating and other physical/chemical index has been proven feasible by several previous studies.

However, this success heavily relies on a suitable site selection along the bedrock fault scarp because erosional processes can exhume the bedrock fault surface, and the sedimentary processes can bury the bedrock fault surface. Namely, non-tectonic factors such as gully erosion, sediment burial, and anthropogenic activity make bedrock fault planes difficult to record and preserve paleo-seismic information.

Therefore, to successfully extract paleo-seismic information from the bedrock area, it is necessary to select suitable study points along the bedrock fault scarp in advance. Traditional survey and mapping methods are time-consuming and labor-intensive, and it is difficult to understand bedrock fault scarps. The resolution of satellite images cannot obtain the fine structure of bedrock fault scarps. Small unmanned aerial vehicle(sUAV), combined with Structure-from-Motion(SfM)photogrammetry has emerged over the last decade. It is used as an established workflow in acquiring topographic data by filling the spatial gap between traditional ground-based surveys and satellite remote sensing images. As a low-altitude photogrammetry technology, it can quickly obtain high-precision three-dimensional surface structures of bedrock fault scarps.

In this paper, taking the Majiayao bedrock fault scarp at the northern foot of Liulengshan in Shanxi Rift as an example, the high-precision and three-dimensional topographic data of the bedrock fault was obtained by using sUAV combined with SfM photogrammetry technology. The high-resolution and high-precision images of tectonic landforms can be obtained conveniently and efficiently by sUAV survey. The sUAV-obtained photos can be further processed by the SfM photogrammetry for generating a digital 3D structure of the bedrock fault scarp with true or shaded color.

The non-tectonic factors such as rock collapse, sediment burial, and gully erosion along the bedrock fault scarp are identified by interpreting the 3D model of the bedrock fault scarp. The profile shape characteristics of the erosion, burial and tectonic fault scarps are summarized through fine geomorphological interpretation and fault profile analysis. For the erosion profile, the hanging wall slope is down-concave, showing that the fault surface below the ground surface has been partially exposed. For the bury profile, the hanging wall slope shows an obvious concave-up shape, indicating that the lower part of the bedrock fault surface has been partially buried by the colluvium. For the tectonic profile, the hanging wall slope shows a smooth and stable slope, showing the exhumation of bedrock fault scarp is controlled purely by tectonics. Finally, the study sites suitable for paleo-earthquake study on bedrock fault surfaces were selected, showing the important role of sUAV aerial survey technology in the selection of paleo-earthquake study sites in bedrock areas.

This study illustrates that based on the high-precision three-dimensional surface structure of the bedrock fault plane from sUAV aerial survey, the existence of non-tectonic factors such as gully erosion, sedimentary burial and bedrock collapse can be clearly identified. These non-tectonic sites can be excluded when selecting suitable sites for paleo-earthquake study indoors. The shape analysis of bedrock fault scarp is also helpful to determine whether the bedrock fault surface is modified by surface process and suitable for paleo-seismic study. The sUAV aerial survey can play an important role in paleoseismic research in the bedrock area, which can accurately select the study points suitable for further paleo-seismic work in the bedrock area.

Table and Figures | Reference | Related Articles | Metrics
STUDY ON PRESENT GRAVITY CHANGE AND DEEP CRUST DEFORMATION IN THE NORTHERN AND MIDDLE SECTIONS OF THE RED RIVER FAULT ZONE
WANG Jian, SHEN Chong-yang, SUN Wen-ke, TAN Hong-bo, HU Min-zhang, LIANG Wei-feng, HAN Yu-fei, ZHANG Xin-lin, WU Gui-ju, WANG Qing-hua
SEISMOLOGY AND EGOLOGY    2021, 43 (6): 1537-1562.   DOI: 10.3969/j.issn.0253-4967.2021.06.011
Abstract775)   HTML20)    PDF(pc) (7654KB)(195)       Save

Results of surface geological survey and deep geophysical exploration indicate that there are significant lateral differences in the crustal structure and deformation of the northern and middle sections of the Red River fault zone. In order to detect the current material migration and deformation characteristics in the crust along the Red River fault zone, we analyzed and removed the gravity changes caused by vertical surface movement, surface water circulation, denudation, and glacial isostatic adjustment effects based on mobile gravity observation data of 3 profiles in the northern and middle section of the Red River fault zone from 2013 to 2019, and obtained the trend of gravity change caused by the migration of materials in the deep crust. Based on recent gravity changes and crustal structure models, the deformation characteristics of Moho surface along the northern, middle, and middle-southern sections of the Red River fault zone are inverted. The results of the study are as follows:
(1)Average gravity change caused by vertical crustal movement is(-0.11±0.21)μGal/a, (0.22±0.21)μGal/a and(0.16±0.21)μGal/a in the northern, middle and middle-southern sections of the Red River fault zone, respectively. The surface crust of the Red River fault zone and its adjacent areas uplifts globally with a rate of((0.92±1.17)mm/a), which is identical to the background trend of uplift of Qinghai-Tibet plateau. Gravity change caused by the surface water reserves cannot be ignored, and the magnitude of the change is -10~10μGal. Gravity change trends on both sides of the Red River fault zone are accordant, but differences in the middle section are higher than that in the northern section.
(2)Recent gravity change of the Red River fault zone has segmental characteristics: The northern section of the Red River fault zone shows a negative gravity change trend with a rate of(-0.39±1.30)μGal/a. Bounded by the Red River fault zone, gravity change in northeastern side of the northern section of the Red River fault zone is negative, while the southwestern side shows positive change, with a gravity change rate increasing with(3.1±0.55)μGal/a·100km relative to the northeastern side, reflecting the constant mass accumulation in the process of deep material flow after crossing the Red River fault zone and then blocked by the Lancan River rigid block under the background of eastward material flow in the Qinghai-Tibet Plateau. Gravity change in the middle section of the Red River fault zone is(0.16±1.57)μGal/a, indicating a low-speed positive change trend. Gravity change in the middle Red River fault zone is lower than that in both sides, which reflects deep boundary control of the Red River fault zone. Recent gravity change rate gradually decreases with(-1.01±0.58)μGal/a·100km from the southwest to the northeast, which indicates more mass accumulation in the northeastern side. Middle-southern section of the Red River fault zone is the junction area between the IndoChina/Sichuan-Yunnan rhomboid and South China block, its positive gravity change trend(with(0.29±1.25)μGal/a on average)reflects the characteristics of mutual lateral compression and material accumulation between blocks. Magnitude of gravity change in northeastern Red River fault zone is greater than that in southwest. Gravity change decreases from southwest to northeast with an average rate of(-0.21±0.48)μGal/ a·100km.
(3)Combining the results of gravity changes caused by deep crustal material migration and Moho density interface model, we can get the recent Moho deformation information. Results indicates that depth of the Moho is generally increasing from southeast(about 36km)to northwest(about 50km), with the Red River fault zone as the boundary. Moho depth in the eastern side is generally deeper than that of the western side, and crustal structure on both sides of the Red River fault zone has significant lateral difference. Moho beneath the Red River fault zone uplifts continuously with an average rate of 0.54cm/a in recent period. Average deformation rate of the northern, middle, and middle-southern section of the Red River fault zone is -0.06cm/a, 1.36cm/a and 0.32cm/a, reflecting the effect of regional unbalanced tectonic movement to a certain extent. Moho beneath the northern section changes gradually from sinking to uplift from northeast to southwest. Moho of the middle section shows uplift in the northeast and sinking in the southwest. The middle-southern section's deformation rate is lower than that in the northern and middle-southern section, and the difference is small between the two sides. Deformation rate in the Red River fault zone is significantly lower than that in its both sides, which shows a strong boundary control effect on deep crustal deformation. The results can not only provide new constraint for fault activity study of the southeastern margin of Tibetan plateau, but also provide evidence to the study of strong earthquake preparation background in the northern and middle section of the Red River fault zone.

Table and Figures | Reference | Related Articles | Metrics
SEGMENTATION OF SURFACE RUPTURE AND OFFSETS CHARACTERISTICS OF THE FUYUN M8.0 EARTHQUAKE BASED ON HIGH-RESOLUTION TOPOGRAPHIC DATA
LIANG Zi-han, WEI Zhan-yu, ZHUANG Qi-tian, SUN Wen, HE Hong-lin
SEISMOLOGY AND EGOLOGY    2021, 43 (6): 1507-1523.   DOI: 10.3969/j.issn.0253-4967.2021.06.009
Abstract823)   HTML39)    PDF(pc) (9539KB)(379)       Save

The spatial distribution and deformation characteristics of the coseismic surface rupture zone are the direct geomorphological expressions of deep fault activities on the surface, which not only record the information of seismic rupture and fault movement but also reflect regional stress and crustal movement. Therefore, prompt investigation on the surface rupture zone after the earthquake is helpful to understand tectonic activities of the seismogenic fault. However, fieldwork is limited by hazardous environments and secondary disasters in the earthquake zone. High-precision geomorphological observation technology can obtain unprecedented high temporal and spatial resolution of the earth's surface features without being restricted by natural conditions, and provide high-quality data for identifying historical earthquake surface ruptures, extracting surface coseismic displacement, and geological mapping of active structures, thus help to understand the rupture processes deeply. The photogrammetric method based on SfM(Structure from Motion)technology provides an effective technical way for fast acquisition of high-resolution post-earthquake topographic data and obtaining 3D geomorphic characteristics in a short time without the limitation of topography. Fuyun Fault is located on the southwest edge of the Altai Mountains. Fuyun M8.0 earthquake occurred in 1931 and produced a coseismic surface rupture zone with obvious linear characteristics. There also developed a large number of right-lateral gully offset, extrusion uplifts, pull-apart basins and a series of tectonic landforms related to strike-slip activities, which are still well preserved after several decades. In this study, the surface rupture zone of the 1931 Fuyun earthquake is selected as the study area. Based on aerial photogrammetry SfM method, a digital elevation model (DEM) with a resolution of 1m is generated, which can reflect micro-structural geomorphology and is suitable for fine geomorphology research in a small area. Combined with the shadow and color change of DEM data, the surface deformation characteristics such as seismic cracks and seismic mole tracks are identified, the surface rupture tracks are drawn in detail, and the surface rupture zone of Fuyun earthquake is segmented through the distribution of its geometric and tectonic geomorphological features. Using gullies as geomorphological markers, the smallest regional offset is regarded as the coseismic offset in the 1931 earthquake. We finally identified the right-lateral horizontal offset of gully along the rupture zone and measured it with software. The results show that the Fuyun earthquake surface rupture zone can be divided into 4 sections from north to south, each of which has different length, connected by compression uplift or pull-apart basin. The main type of surface rupture is shear crack, and there are also transpressional cracks, tension cracks, and tectonic geomorphological expressions such as mole track, ridge, and pull-apart basin. Based on the measurement of the horizontal offset of 194 groups of gullies, it is found that the average coseismic offset in the 1931 earthquake is(5.06±0.13)m, which is equivalent to the coseismic offset produced by similar magnitude earthquake. The area where the local absence or sudden change of coseismic offset occurs also has a good corresponding relationship with the geometry of stepover, which reflects the geometric location of the stepover to a certain extent. The results fill up the gap of the fine morphology of the Fuyun earthquake surface rupture zone and further demonstrate the good application value of high-resolution topographic data in the study of active structures.

Table and Figures | Reference | Related Articles | Metrics
PALEO-EARTHQUAKE STUDY METHODS ON BEDROCK FAULT SURFACE—HISTORY, CURRENT SITUATION, SUGGESTIONS AND PROSPECTS
ZOU Jun-jie, HE Hong-lin, YOKOYAMA Yosuke, WEI Zhan-yu, SHI Feng, HAO Hai-jian, ZHUANG Qi-tian, SUN Wen, ZHOU Chao, SHIRAHAMA Yoshiki
SEISMOLOGY AND GEOLOGY    2019, 41 (6): 1539-1562.   DOI: 10.3969/j.issn.0253-4967.2019.06.015
Abstract617)   HTML    PDF(pc) (4946KB)(344)       Save
With the development and breakthrough of a series of techniques such as the fault surface morphology measurement, the geochemical element determination and Quaternary dating methods, it becomes possible to study paleo-earthquake using information recorded by the bedrock fault surface. At present, more and more scholars domestic and overseas have carried out a large number of paleo-earthquake studies on bedrock fault surfaces in different professional perspectives and have achieved a series of innovative results. This paper systematically introduces the development history, the current situation and the basic principles and applications of paleo-earthquake study on bedrock fault surface. Moreover, after the thorough discussion of the existing problems in paleo-earthquake research of bedrock fault surface, some suggestions for optimizing the current work are proposed. Finally, on the basis of comparison of the characteristics, advantages and disadvantages of various research methods, the prospects and development trends of the bedrock fault paleo-earthquake study are predicted. Lots of weaknesses and limitations in the current study are pointed out in this paper:Firstly, for the method of faullt surface morphology measurement, different morphological expression parameters exist nowadays, however, their advantages and disadvantages are unknown. Secondly, the TCNs method still has a large uncertainty in the age determination of the paleo-earthquake, and the mature cosmogenic nuclides dating methods is too few to meet the dating requirements of different lithologic fault surfaces. Besides, a reliable relationship between relative dating parameters such as morphologicl and physicochemical characteristics and the absolute dating method such as TCNs are not closely established to build a reliable chronology framework. The last but not the least, the lack of mechanical research on the physical and chemical biological processes that the bedrock fault surface experienced before and after the faulting and exposure, and insufficient multi-method comprehensive comparison are also the obstacles for the paleo-earthquake study on bedrock fault surface. It is suggested that in the future study of paleo-earthquakes on bedrock fault surfaces, more attention should be paid to the following aspects:Firstly, strengthen the evaluation of the reliability, applicability and accuracy of the parameters of each morphological model in time and improve the mathematical model of current dating techniques, optimize the mechanism of cosmogenic nuclide production, and introduce new high-precision dating technology timely; Secondly, strive to establish a reliable age framework between relative dating index(X)and absolute dating age(T)regionally; In addition, the morphological structure and mineral compositions of bedrock fault surface are analyzed proactively on the microscopic scale, and the mechanical study is conducted on a series of physical, chemical and biological processes that the fault surface experienced before and after the exposure. At last, comprehensive and comparative research need to be conducted by the multi-disciplinary and multi-method approaches. In conclusion, the paleo-earthquake study on the bedrock fault surface is going through the processes from the qualitative description to the quantitative expression, from the single-disciplinary method to the multi-disciplinary integration, from the exploration of a certain technical index to the comprehensive application of multi-source data technology. The combination of relative dating indicators(X)and absolute dating(T), and putting more emphasis on the mechanical study on the microscopic scale are the development trends of paleo-earthquake study on the bedrock fault surface. The close combination of the paleo-earthquake study of the bedrock fault surface with the traditional method of trenching conducted in the Quaternary sediment region is considered to help more effectively reconstruct a more complete paleo-earthquake sequence and the faulting history on the active fault zone, thus a more reasonable evaluation of the regional seismic hazard can be obtained.
Reference | Related Articles | Metrics
INTERPRETATION AND ANALYSIS OF THE FINE FAULT GEO-METRY BASED ON HIGH-RESOLUTION DEM DATA DERIVED FROM UAV PHOTOGRAMMETRIC TECHNIQUE: A CASE STUDY OF TANGJIAPO SITE ON THE HAIYUAN FAULT
SUN Wen, HE Hong-lin, WEI Zhan-yu, GAO Wei, SUN Hao-yue, ZOU Jun-jie
SEISMOLOGY AND GEOLOGY    2019, 41 (6): 1350-1365.   DOI: 10.3969/j.issn.0253-4967.2019.06.003
Abstract976)   HTML    PDF(pc) (8150KB)(288)       Save
Fault-related tectonic geomorphologic features are integrated expressions of multiple strong seismological events and long-term surface processes, including crucial information about strong earthquake behavior of a fault. It's of great significance to identify the strong seismic activity information from faulted landscapes, which include the date and sequence of the seismic activities, displacements, active fault features, for studying the seismic rupture process, predicting the future seismic recurrence behavior and evaluating the seismic hazard of the fault.
However, due to the restriction of measuring techniques and the subsequent poor quality of the acquired data, it has been difficult to accurately extract such information from complex tectonic landforms to study active faults for a long time. Recently, "small Unmanned Aerial Vehicle(sUAV)" photogrammetric technique based on "Structure from Motion(SfM)" provides a cost-efficient and convenient access to high-resolution and high-accuracy "digital elevation models(DEMs)" of tectonic landforms.
This paper selects the Tangjiapo area at the Haiyuan Fault to conduct data collection, in which the structural and geomorphic features are well preserved. Using a small quadrotor unmanned aerial vehicle(Inpire 2), we collect 1598 aerial photographs with a coverage area of 0.72km2. For calibrating the accuracy of the aerial data, we set 10 ground control points and use differential-GPS to obtain the spatial coordinates of these control points. We use model software Agisoft PhotoScan to process these digital pictures, obtaining high-resolution and high-accuracy DEM data with the geographic information, in which data resolution is 2.6cm/pix and the average density of point cloud is 89.3 point/m2. The data with these accuracy and resolution can fully show the real geomorphic features of the landform and meet the requirements for extracting specific structural geomorphic information on the surface.
Through the detailed interpretation of the tectonic landforms, we identify a series of structures associated with the strike-slip fault and divide the alluvial fan into four stages, named s1, s2, s3, and s4, respectively.Wherein, the s1 is the latest phase of the alluvial fan, which is in the extension direction of the Haiyuan Fault and there isn't any surface fracture, indicating that the s1 was formed after the M8.5 Haiyuan earthquake in 1920. The rupture zone on the s2 fan is composed of varied kinds of faulting geomorphologic landforms, such as a series of en echelon tension-shear fractures trending 270°~285°, fault scarps and seismic ridges caused by the left-lateral motion of the seismic fault. In addition, a number of field ridges on the s2 fan were faulted by the 1920 Haiyuan M8.5 earthquake, recording the co-seismic displacements of the latest earthquake event. Relatively speaking, the surface rupture structure of the s3 fan is simple, mainly manifested as linear fault scarp with a trend of 270°~285°, which may indicate that multiple earthquakes have connected the different secondary fractures. And a small part of s4 fan is distributed in the southwest of the study area without fault crossing.
Furthermore, we measured the horizontal displacements of river channels and vertical offsets of fault scarps. The faulted ridge on the s2 fan and faulted gully on the s3 fan provide good linear markers for obtaining the fault left-lateral dislocation. We used the graphical dislocation measurement software LaDiCaoz developed based on Matlab to restore the gully position before the earthquake by comparing the gully morphology on both sides of the fault, and then determined the horizontal offset of s2, which is(4.3±0.4)m and that of s3 is(8.6±0.6)m. In addition, based on the DEM data, we extracted the fault scarp densely along the fault strike, and obtained the vertical offset of s2, which is(4.3±0.4)m and that of s3 is(1.79±0.16)m.
Moreover, we detect slope breaks in the fault scarp morphology. For compound fault scarps generated by multiple surface rupture earthquakes, there are multiple inflection points on the slope of the topographic section, and each inflection point represents a surface rupture event. Therefore, the slope break point on the scarp becomes an important symbol of multiple rupture of the fault. The statistical result shows that the slope breaks number of s2 is 1 and that of s3 is 2. Based on the analysis of horizontal displacements of river channels and vertical offsets of fault scarps as well as its slope breaks, two surface rupturing events can be confirmed along the Tangjiapo area of the Haiyuan Fault. Among them, the horizontal and vertical displacements of the older event are(4.3±0.95)m and(0.85±0.22)m, respectively, while that of the latest event are(4.3±0.4)m and(0.95±0.14)m, which are the coseismic horizontal and vertical offsets of the 1920 Haiyuan earthquake.
These recognitions have improved our cognitive level of the fine structure of seismic surface rupture and ability to recognize paleoearthquake events. Therefore, the high-resolution topographic data obtained from the SfM photogrammetry method can be used for interpretation of fine structure and quantitative analysis of microgeomorphology. With the development of research on tectonic geomorphology and active tectonics toward refinement and quantification, this method will be of higher use value and practical significance.
Reference | Related Articles | Metrics
THE PLATE SUBDUCTION AND STRESS STATE IN THE PAMIR-HINDU KUSH REGION
SUN Wen-bin, HE Yue-shi, CHANG Zheng, QI Xiao-yan
SEISMOLOGY AND GEOLOGY    2009, 31 (2): 207-217.   DOI: 10.3969/j.issn.0253-4967.2009.02.001
Abstract2310)      PDF(pc) (3485KB)(1167)       Save
In this paper,the collision configuration between Indian plate and Eurasian plate was studied in detail and the focal mechanism solutions of the earthquakes were analyzed by using the earthquake catalogues from 1973 to 2006 provided by NEIC and focal mechanism solutions from 1978 to 2005 provided by Harvard University.The results indicate that:Eurasian plate was underthrust southwards with a dip of 50?,and the maximum focal depth is 364km;Indian plate collided with Eurasian plate by means of interlayer intercalation.The collision was strong among the Pamir knot,where the seismic activities were enhanced significantly.The focal profile shows a "V-shape" distribution;on the sides of the Pamir knot,the seismic activities decreased apparently along with the decreasing subduction force of the Indian plate.The focal profile indicates that the profile configuration of the northward-subduction of the Indian plate disappeared gradually and the profile configuration of the southeastward-subduction of the Eurasian plate is more perspicuous.The analysis on the distribution pattern of the focal profile suggests that the Indian plate did not penetrate the Eurasian plate.The repeated multi-period and imbricate distribution of earthquake may be the reflection of the process of northward-subduction,detachment,and then re-subduction and re-detachment of the Indian plate.As a result of strong collision and extrusion between Indian plate and Eurasian plate,Pamir-Hindukush region is under a tectonic stress state of near-NS compression.The number of reverse faults accounts for about 70%of the total,the normal faults account for about 11%,and the strike-slip faults,about 19%.The predominant orientation of P axis indicates that the principal compressive stress is oriented near-NS,the dip is near-horizontal,inclining from south to north;and the dip of T axis is near-vertical,similar to the dip of subduction zone.Characteristics of stress field in Pamir-Hindukush show that the active northward-extrusion of Indian plate is the main dynamics of the regional stress field,and the Eurasian plate which dips southward is in a state of passive extrusion.
Related Articles | Metrics
THE FEATURE OF SEISMICITY IN NORTHEAST CHINA AND ITS RELATION TO THE SUBDUCTION OF THE JAPAN SEA PLATE
SUN Wen-bin, HE Yue-shi
SEISMOLOGY AND GEOLOGY    2004, 26 (1): 122-132.  
Abstract1427)      PDF(pc) (6397KB)(2543)       Save
Based on the analyses of grouped activities of deep-focus (mb≥6.0) and shallow-focus (Ms≥5.0) earthquakes in Northeast China, the spatial and temporal correlation between the deep-focus "strong earthquake group" and shallow-focus "strong earthquake group" was studied. The study was focused mainly on the characteristics of earthquake distribution along the collision zone between the west Pacific plate and Eurasian plate, as well as its relation to the form of the west Pacific subduction zone. Moreover, emphasis was also laid on the analyses of the effect of the west Pacific plate on the seismicity in Eurasian plate. The results show that in the region where the west Pacific plate subducts at low angle, the seismicity along the plate collision zone is very strong, and the effect of plate subduction on the seismicity in Eurasian continent is most significant. In this condition, the subduction zone is subjected to relatively strong compressive stress. However, in the region where the west Pacific plate subducts at high angle, the seismicity along the plate collision zone becomes weaker, and the effect of plate subduction to the seismic activity in Eurasian continent becomes less significant. In this condition, the tensile stress produced by the subduction zone at depth is enhanced. We propose, therefore, that the seismic activity of Northeast China will enter the active period of shallow "strong earthquake group" in forthcoming 10 years. In this period, 6 earthquakes of Ms≥5.0 may occur in this region. It is emphasized that the monitoring and prediction of seismic activity in Northeast China should be enhanced.
Related Articles | Metrics