随着大地测量观测理论、观测平台和观测技术的发展与进步, InSAR作为一种新型的遥感地质观测途径和数据源, 在同震形变获取、地震应急监测、抗震救灾和发震构造科学研究中发挥了越来越重要和不可替代的作用。其中, InSAR在同震形变监测中的应用最为广泛, 能够在重要灾害性地震事件发生后及时响应, 在识别隐伏断层、确定发震断层、监测地表破裂、研究发震断层的运动学特征、获取三维形变以及厘定发震构造等问题中能提供有效的地表观测数据和模型约束。InSAR观测以其大范围、高精度、及时性等技术和数据优势, 在地震应急观测方面的科技支撑作用逐渐凸显, 能解决防震减灾的实际需求并逐渐趋于业务化。梳理近年来InSAR技术在不同活动构造区和地震危险区地震周期形变监测中的应用、分析基于InSAR同震形变观测的断层运动学特征和发震构造研究、讨论InSAR技术的前沿发展趋势, 能更好地服务于当前青藏高原及周边广大地区的防震减灾事业, 有助于实现活动断层的地震危险性评估等科学目标。基于此, 文中简要综述了近20年来InSAR技术在同震形变获取、应用中的现状、业务化、科学认识和存在的问题。
文中运用D-InSAR技术获取的2021年3月19日西藏比如县MS6.1 地震的同震形变场显示: 升、 降轨LOS向同震位移场的长轴为NE向, 其中最大抬升量和沉降量分别约为5cm和6cm; 在此基础上, 基于Okada模型反演断层面的精细滑动分布特征。反演结果表明近场残差得到有效控制, 其中发震断层参数为: 走向228°, 为SE倾向断层, 宏观震中位于(31.94°N, 92.87°E), 矩震级为 MW5.8, 平均滑动角为-56.42°, 最大滑动量达0.2m, 倾角为55°。最后, 运用Column33软件计算以反演断层为接收断层的不同深度的同震库仑应力变化, 结果显示比如地震震中附近产生了明显的应力降, 深部断层滑动量很小。后续地震事件通常发生在5~15km深度, 这与相应深度的应力增加区域一致; 以班公湖-怒江断裂和聂荣北断裂为接收断层的应力变化显示, 比如地震在2条断裂的部分区域产生了应力加载, 库仑破裂应力值ΔCFS>0.01MPa, 需要引起关注。结合地表形变观测资料和前人的研究成果初步认为, 比如 MW5.8 地震的发震断层为NE向隐伏次级断裂, 位于班公湖-怒江断裂带西段北侧, 断裂活动方式以正断为主, 兼具少量走滑分量, 发震断层与主断层的关系需要通过野外地质调查资料综合确定。
根据喜马拉雅断裂系的构造形态,采用缓倾角反铲型断层模型模拟MHT上地震破裂部分的坡坪式发震构造。利用Alos-2及Sentinel-1获取的InSAR数据,反演获得了2015年尼泊尔Gorkha地震及其最大余震Kodari地震的同震滑动分布模型。与单独利用Alos-2或Sentinel-1 InSAR数据的反演结果相比,利用Alos-2和Sentinel-1 InSAR数据联合反演能够提供Gorkha地震破裂的更多细节信息,尤其对深部信息的约束更加明显。联合反演得到的破裂深度最大可达24km,穿过了该区域的闭锁线,到达了闭锁和蠕滑的转换区域。反演的断层模型倾角在3°~10°之间,最大滑动量出现在地下17km处,约4.5m。Gorkha地震和Kodari地震发震性质相似,都是发生在MHT断层上的低角度逆冲型地震,其中Gorkha地震略带右旋分量。反演结果还显示,Gorkha地震与Kodari地震的破裂滑动在空间上存在互补性,Kodari地震就发生在Gorkha地震的破裂空区内。通过计算Gorkha地震对Kodari地震发震断层的库仑破裂应力加载,发现Kodari地震震中恰位于库伦破裂应力正负交界区域,库仑破裂应力加载达0.4MPa,表明Kodari地震可能受到了Gorkha地震的触发。
2008年西藏改则MW6.4地震发生于青藏高原腹地拉萨块体与羌塘块体之间的张性活动构造带上,是一次典型的正断层破裂事件。基于InSAR对SN向形变的极度不敏感性,文中利用结合先验条件的最小二乘迭代逼近法解算了改则地震的三维同震形变场。结果显示:主震断层两盘的垂直运动差异明显,上盘存在明显的沉降“双心”特征,量值分别为-41.4 cm、-48.9cm,而下盘的最大隆升量仅5cm;除余震断层附近存在小量级(<5cm)的N向形变外,SN向形变总体趋势向S;三维形变场的整体以垂直形变为主,并集中于上盘,而水平形变具有明显的EW向分离和E向旋转特征;所得到的各形变分量与模拟值的残差标准差不超过6cm,说明此方法能够用于获取精度较高的三维同震形变场。整体上,三维形变场的分解结果与改则地震的张性破裂特征及其所处的EW向拉伸、SN向压缩构造应力背景呈现一致性特征。
利用欧洲空间局新发射的Sentinel-1A卫星获取的第1对同震SAR影像,采用30m×30m分辨率的ASTER GDEM数据去除地形效应,应用枝切法解缠,得到了2014年8月24日美国加利福尼亚州纳帕地震的地表同震形变场。为了获取最优同震形变场,对比使用了90m×90m分辨率的SRTM数据去除地形相位,以及最小费用流方法进行相位解缠。结果显示此次地震造成形变场在LOS方向(Line Of Sight)的最大抬升量和最大沉降量分别达到了0.1m和0.09m。基于获取的同震形变场,采用限制性最小二乘算法进行敏感性迭代拟合,获取了此次地震的断层滑动分布及部分震源参数。反演结果表明发震断层的走向为341.3°,倾角为80°,破裂以右旋走滑为主,平均滑动角为-176.38°,最大滑动量达0.8m,位于地表下约4.43km处。此次地震累计释放地震矩1.6×1018N·m,约合矩震级MW6.14。
基于大量SAR数据的时序InSAR技术已被广泛应用于断裂带震间长期缓慢地壳形变的观测研究,文中对现有多种时序InSAR方法(如Stacking,PSInSAR,SBAS等)的基本原理和技术特点进行了概括总结。采用PSInSAR技术,利用2003—2010年的17景降轨ENVISAT/ASAR数据,在海原断裂带中段开展了震间地壳形变观测的实验研究,获得了海原断裂中段的跨断层InSAR形变速率场整体图像,显示了约5mm/a的左旋走滑运动速率,与GPS和地质学研究基本一致。在此基础上,对时序InSAR断层活动性观测研究中的若干问题,如LOS形变速率与目标断层走向的关系、LOS 形变速率与跨断层观测宽度的关系、LOS 形变速率与GPS等其他形变速率的关系以及LOS 形变速率场揭示的断层相互作用及断层滑动方式等进行了分析探讨。这些将为进一步推进InSAR构造变形监测研究提供参考。
发震断层的形变是断层活动的重要参数之一,对认识断层性质、震源机理有重要作用。文中以逆冲性质为主的汶川地震为例,采用符合地表水平形变特征的Biharmonic样条插值对GPS水平形变矢量插值,然后再分解为EW和SN向分量。利用可靠的GPS观测值对InSAR参考点进行校正,统一两者的坐标系。通过对汶川地震视线向形变场剖面与GPS对比分析发现,断层上盘GPS与InSAR观测参考点相差9.93cm,而下盘则为-11.49cm。在此研究基础上,通过GPS水平形变场与InSAR视线向形变场联合解算,获取了汶川地震垂直连续形变场。结果表明,断层两侧垂直形变衰减较快,横跨断裂带形变量>30cm的宽度不超过50km;沿发震断层附近垂直形变高值区分布不均匀,主要集中分布在发震断裂的汶川县城至都江堰段、茶坪—北川—南坝段和青川段。这3段各有特色,南段断层两侧垂直形变极不对称,主要以上盘剧烈抬升为主,最大抬升区域在映秀镇至连山坪一带,抬升量达到5.5m。中段表现为较强的反对称性,断层一侧抬升另一侧沉降。该段上盘最大抬升区域在茶坪东侧,抬升量为255cm,下盘最大沉降量在永庆,沉降量为-215cm。北端垂直形变相对较小,主要分布在青川北侧,呈对称分布,在发震断层最北端,最大抬升量为120cm。
干涉基线是InSAR形变观测中一个非常重要且关键的参数,它不仅对像对的相干性起决定性作用,还对形变观测的精度和可靠性有直接影响。若基线不能被准确估计,就会使轨道残余相位和地形残余相位混入形变相位而导致观测误差。文中首先分析了干涉基线对参考相位和模拟地形相位的影响及几种不同的干涉基线估计方法,然后以6景ERS2 SAR图像为数据源,以1997年西藏玛尼地震的同震-震后形变场为例,对比分析了基于粗略轨道数据、精密轨道数据、干涉条纹频率及地面控制点等不同基线估计条件下的干涉形变场图像。结果表明,粗/精轨道数据差别很大,利用粗略轨道数据估计基线得到的差分干涉图含有明显的轨道残余相位,致使干涉条纹密集,观测形变量偏大。因此,必须利用精密轨道数据进行基线校正。有时精轨数据也不能完全消除轨道的影响,这时还要做基于干涉条纹频率的多余条纹去除校正及基于地面控制点的基线精校正。处理得到的玛尼地震同震形变沿断层走向南、北两盘的最大相对位移约4.5m,与野外观测结果一致。得出的震后形变场主要集中在断层附近10~20km的狭长条形区域内,震后508d的累积形变量至少达5.6cm,随着时间延续,震后累积形变量增加。