青海茫崖 MS5.8 地震发生在祁连山与柴达木盆地交界的部位。对于此次地震开展研究, 不仅有助于理解柴达木盆地与祁连山之间的现今构造变形、 应力状态及动力学过程, 也将为该区未来的强震趋势预测提供依据。文中首先利用CAP方法反演得到该次地震的震源深度约为13km, 震源机制解为逆冲性质。结合地表地质、 卫星影像和地震反射剖面解译, 认为该地震发生在冷湖逆断裂-褶皱带的东南端, 发震构造可能为冷湖七号东背斜之下控制背斜生长的2条倾向相反的隐伏逆冲断裂之一。此次茫崖5.8级地震仅使冷湖七号东背斜下伏逆断层发生了部分破裂, 并未破裂至地表, 为典型的褶皱地震。震区发育多条第四纪活动褶皱及下伏逆断层, 这些构造均具备发生 MW5.9 ~7.2地震的构造条件, 并有可能因级联地震破裂而引发7级以上强震。因此, 震区未来的地震危险性不容忽视。
2008年汶川8级地震的发震构造是高角度铲形逆冲断层, 伴随这种类型地震的远近场强地面运动在中国是第1次被记录到。综合汶川地震发震构造、破裂过程和强地面运动峰值加速度的资料, 探讨高角度铲形逆冲断裂作用与强地面运动的关系。结果显示, 龙门山断裂带内强地面运动峰值加速度明显大于断裂带外的台站, 前者可达后者的2倍多。同时, 该地震强地面运动具有很大的垂直分量, 近断层垂直分量大于水平分量。结合远场资料, 发现龙门山断裂带上盘峰值加速度垂直分量总体上大于下盘, 上盘垂直分量的衰减比下盘慢。不考虑远场的高值异常, 水平分量似乎也存在上盘效应, 但目前无证据表明这些异常应该被剔除。另外, 远场地面运动特征显示, 相对于反方向, 沿同震断层扩展方向(NNE)的峰值加速度水平分量衰减较慢, 垂直分量的这种方向效应不明显。考虑到汶川地震破裂浅、断面陡和以垂直形变为主这3个显著的同震构造特性, 近场和远场地面运动记录反映出位错类型和台站的实际断层距的控制作用。正因为汶川地震高角度铲形逆冲断裂结构的特殊性, 导致其地面运动与普通逆断型地震强地面运动的同震效应在某些分量上相同, 其他分量存在差异。
基于芦山地震的震源破裂过程反演结果,利用有限断层模型,以芦山地区三维地壳速率结构模型为基础,对芦山 "4·20"7.0级强烈地震引起的强地面运动进行了模拟.对这次地震中由典型盲断层引起的强地面运动数值模拟结果反映了与实际震害相近的分布特征: 断层上盘的宝盛、龙门及芦山以北位于极震区,也是强地面运动的高强度集中区,特别是垂向分量的速度、加速度峰值均在该地区达到了最大值,最能反映地表震害特征的竖向地震加速度在龙门一带达到了350gal,与极震区Ⅸ度的烈度相当,而在芦山以北龙门一带,瞬时竖向位移峰值高达110cm,这些特征与实际震害分布是非常相近的.综合分析认为,这次地震强地面运动表现出了明显的逆冲断层引起的强地面运动的分布特征,同时在强地震动传播过程中,由于高陡峭地形地貌特征及四川盆地内山间盆地的影响,地形地貌和盆地效应对地震波的反射和放大作用明显加强,也是该地区地震破坏强度增大的重要因素.
近场强地震动除受场地条件的影响外,还受到震源破裂面上子源的空间分布特点、子源破裂先后顺序的强烈控制,基于数值格林函数法的近场强地震动数值模拟方法可以综合考虑震源、传播途径及局部场地条件的影响,对计算过程进行合理简化,分2步完成地震动模拟:第1步,在介质均匀区采用矩张量的解析解计算所有子源在盖层底面的位移,形成下一步有限元计算的输入场;第2步,在盖层介质不均匀区,结合局部人工透射边界技术,采用时、空解耦的波动显式有限元方法计算地表强地震动.在有限断层模型中,采用具有9个力偶的等效地震矩张量表达断层产状、滑动方向等的影响,采用Brune模型定义各子源的滑动时间函数,描述滑动的时、空不均匀分布特征,从而细化震源模型.通过对Northridge地震中4个基岩台站地表地震动的模拟结果和强震记录,验证了此简化计算方法的可行性.