[1] |
常祖峰. 2015. 2013年云南奔子栏M5.9地震发生的地震地质背景[J]. 地震地质, 37(1): 192-207. doi: 10.3969/j.issn.0253-4967.2015.01.015.
DOI
|
|
CHANG Zu-feng. 2015. The seismotectonic background of the 2013 Benzilan M5.9 earthquake, Yunnan Province[J]. Seismology and Geology, 37(1): 192-207. (in Chinese)
|
[2] |
常祖峰, 常昊, 臧阳, 等. 2016. 维西-乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报, 22(3): 517-530.
|
|
CHANG Zu-feng, CHANG Hao, ZANG Yang, et al. 2016. Recent active features of Weixi-Qiaohou Fault and its relationship with the Honghe Fault[J]. Journal of Geomechanics, 22(3): 517-530. (in Chinese)
|
[3] |
虢顺民, 向宏发, 计凤桔, 等. 1996. 红河断裂带第四纪右旋走滑与尾端拉张转换关系研究[J]. 地震地质, 18(4): 301-309.
|
|
GUO Shun-min, XIANG Hong-fa, JI Feng-ju, et al. 1996. A study on the relation between Quaternary right-lateral slip and tip extension along the Red River Fault[J]. Seismology and Geology, 18(4): 301-309. (in Chinese)
|
[4] |
季灵运, 刘传金, 徐晶, 等. 2017. 九寨沟MS7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报, 60(10): 4069-4082.
|
|
JI Ling-yun, LIU Chuan-jin, XU Jing, et al. 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China[J]. Chinese Journal of Geophysics, 60(10): 4069-4082. (in Chinese)
|
[5] |
李宁, 康帅, 朱良玉. 2019. 基于GPS资料研究红河断裂带现今闭锁程度与地震危险性[J]. 大地测量与地球动力学, 39(7): 700-705.
|
|
LI Ning, KANG Shuai, ZHU Liang-yu. 2019. Study on present-day locking and seismic hazard of the Red River fault zone based on GPS data[J]. Journal of Geodesy and Geodynamics, 39(7): 700-705. (in Chinese)
|
[6] |
李西, 冉勇康, 陈立春, 等. 2016. 红河断裂带南段全新世地震活动证据[J]. 地震地质, 38(3): 506-604. doi: 10.3969/j.issn.0253-4967.2016.03.007.
DOI
|
|
LI Xi, RAN Yong-kang, CHEN Li-chun, et al. 2016. The Holocene seismic evidence on southern segment of the Red River fault zone[J]. Seismology and Geology, 38(3): 506-604. (in Chinese)
|
[7] |
刘琦, 闻学泽, 邵志刚. 2016. 基于GPS、 水准和强震动观测资料联合反演2013年芦山7.0级地震同震滑动分布[J]. 地球物理学报, 59(6): 2113-2125.
|
|
LIU Qi, WEN Xue-ze, SHAO Zhi-gang. 2016. Joint inversion for coseismic slip of the 2013 MS7.0 Lushan earthquake from GPS, leveling and strong motion observations[J]. Chinese Journal of Geophysics, 59(6): 2113-2125. (in Chinese)
|
[8] |
吕江宁, 沈正康, 王敏. 2003. 川滇地区现代地壳运动速度场和活动块体模型研究[J]. 地震地质, 25(4): 543-554.
|
|
LÜ Jiang-ning, SHEN Zheng-kang, WANG Min. 2003. Contemporary crustal deformation and active tectonic block model of the Sichuan-Yunnan region, China[J]. Seismology and Geology, 25(4): 543-554. (in Chinese)
|
[9] |
马宗晋. 2001. 青藏高原岩石圈现今变动与动力学[M]. 北京: 地震出版社.
|
|
MA Zong-jin. 2001. Current Variation and Dynamics of the Lithosphere in Tibetan Plateau[M]. Seismological Press, Beijing. (in Chinese)
|
[10] |
乔学军, 王琪, 杨少敏, 等. 2014. 2008年新疆乌恰MW6.7地震震源机制与形变特征的InSAR研究[J]. 地球物理学报, 57(6): 1805-1813.
|
|
QIAO Xue-jun, WANG Qi, YANG Shao-min, et al. 2014. Study on the focal mechanism and deformation characteristics for the 2008 MW6.7 Wuqia earthquake, Xinjiang by InSAR[J]. Chinese Journal of Geophysics, 57(6): 1805-1813. (in Chinese)
|
[11] |
单新建, 屈春燕, 宋小刚, 等. 2009. 汶川MS8.0地震InSAR同震形变场观测与研究[J]. 地球物理学报, 52(2): 496-504.
|
|
SHAN Xin-jian, QU Chun-yan, SONG Xiao-gang, et al. 2009. Coseismic surface deformation caused by the Wenchuan MS8.0 earthquake from InSAR data analysis[J]. Chinese Journal of Geophysics, 52(2): 496-504. (in Chinese)
|
[12] |
苏有锦, 秦嘉政. 2001. 川滇地区强地震活动与区域新构造运动的关系[J]. 中国地震, 17(1): 24-34.
|
|
SU You-jin, QIN Jia-zheng. 2001. Strong earthquake activity and relation to regional neotectonic movement in Sichun-Yunnan region[J]. Earthquake Research in China, 17(1): 24-34. (in Chinese)
|
[13] |
王绍晋, 张建国, 余庆坤, 等. 2010. 红河断裂带的震源机制与现代构造应力场[J]. 地震研究, 3(2): 200-207.
|
|
WANG Shao-jin, ZHANG Jian-guo, YU Qing-kun, et al. 2010. Focal mechanism of strong and medium-small earthquakes and modern tectonic stress-field of the Red-River fault zone[J]. Journal of Seismological Research, 3(2): 200-207. (in Chinese)
|
[14] |
王绍俊, 刘云华, 单新建, 等. 2021. 云南漾濞MS6.4地震的同震地表形变与断层滑动分布[J]. 地震地质, 43(3): 692-705. doi: 10.3069/j.issn.0253-4967.2021.03.014.
DOI
|
|
WANG SHAO-jun, LIU Yun-hua, SHAN Xin-jian, et al. 2021. Coseismic surface deformation and slip models of the 2021 MS6.4 Yangbi(Yunnan, China)earthquake[J]. Seismology and Geology, 43(3): 692-705. (in Chinese)
|
[15] |
汪一鹏, 沈军, 王琪, 等. 2003. 川滇块体的侧向挤出问题[J]. 地学前缘, 10(S1): 188-192.
|
|
WANG Yi-peng, SHEN Jun, WANG Qi, et al. 2003. On the lateral extrusion of Sichuan-Yunnan block(Chuandian block)[J]. Earth Science Frontiers, 10(S1): 188-192. (in Chinese)
|
[16] |
向宏发, 韩竹军, 虢顺民, 等. 2004. 红河断裂带大型右旋走滑运动与伴生构造地貌变形[J]. 地震地质, 26(4): 597-610.
|
|
XIANG Hong-fa, HAN Zhu-jun, GUO Shun-min, et al. 2004. Large-scale dextral strike-slip movement and associated tectonic deformation along the Red River fault zone[J]. Seismology and Geology, 26(4): 597-610. (in Chinese)
|
[17] |
徐锡伟, 吴熙彦, 于贵华, 等. 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 39(2): 219-275. doi: 10.3969/j.issn.0253-4967.2017.02.001.
DOI
|
|
XU Xi-wei, WU Xi-yan, YU Gui-hua, et al. 2017. Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their preliminary application in mainland China[J]. Seismology and Geology, 39(2): 219-275. (in Chinese)
|
[18] |
徐锡伟, 于贵华, 马文涛, 等. 2003. 中国大陆中轴构造带地壳最新构造变动样式及其动力学内涵[J]. 地学前缘, 10(S1): 160-167.
|
|
XU Xi-wei, YU Gui-hua, MA Wen-tao, et al. 2003. Model of latest crustal tectonic motion of the central tectonic zone on the mainland of China[J]. Earth Science Frontiers, 10(S1): 160-167. (in Chinese)
|
[19] |
张国宏, 屈春燕, 宋小刚, 等. 2010. 基于InSAR同震形变场反演汶川MW7.9地震断层滑动分布[J]. 地球物理学报, 53(2): 269-279.
|
|
ZHANG Guo-hong, QU Chun-yan, SONG Xiao-gang, et al. 2010. Slip distribution and source parameters inverted from co-seismic deformation derived by InSAR technology of Wenchuan MW7.9 earthquake[J]. Chinese Journal of Geophysics, 53(2): 269-279. (in Chinese)
|
[20] |
张培震, 邓起东, 张国民, 等. 2003a. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 33(S1): 12-20.
|
|
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min, et al. 2003a. Active tectonic blocks and strong earthquakes in China continent[J]. Science in China(Ser D), 33(S1): 12-20. (in Chinese)
|
[21] |
张培震, 王敏, 甘卫军, 等. 2003b. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J]. 地学前缘, 10(Sl): 81-92.
|
|
ZHANG Pei-zhen, WANG Min, GAN Wei-jun, et al. 2003b. Slip rates along major active faults from GPS measurements and constraints on contemporary continental tectonics[J]. Earth Science Frontiers, 10(Sl): 81-92. (in Chinese)
|
[22] |
钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑), 26(4): 289-295.
|
|
ZHONG Da-lai, DING Lin. 1996. Rising process of the Tibet plateau and its mechanism[J]. Science in China(Ser D), 26(4): 289-295. (in Chinese)
|
[23] |
Allen C R, Gillespie A R, Yuan H, et al. 1984. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard[J]. Geological Societyof America Bulletin, 95(6): 686-700.
|
[24] |
Boncio P, Lavecchia G, Pace B. 2004. Defining a model of 3D seismogenic sources for seismic hazard assessment applications: The case of central Apennines(Italy)[J]. Journal of Seismology, 8(3): 407-425.
DOI
URL
|
[25] |
Ji L Y, Wang Q L, Xu J, et al. 2017. The 1996 MW66 Lijiang earthquake: Application of JERS-1 SAR interferometry on a typical normal-faulting event in the northwestern Yunnan rift zone, SW China[J]. Journal of Asian Earth Sciences, 146:221-232.
DOI
URL
|
[26] |
King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 84(3): 935-953.
|
[27] |
Laske G, Masters G, Ma Z, et al. 2013. Update on CRUST1. 0-A1-degree global model of earth’s crust[C]//EGU General Assembly 2013.Vienna, Austria: EGU.
|
[28] |
Li Y, Liu M, Li Y,, et al. 2019. Active crustal deformation in southeastern Tibetan plateau: The kinematics and dynamics[J]. Earth and Planetary Science Letters, 523:115708.
DOI
URL
|
[29] |
Lutter W J, Fuis G S, Ryberg T, et al. 2004. Upper crustal structure from the Santa Monica Mountains to the Sierra Nevada, southern California: Tomographic results from the Los Angeles regional seismic experiment, Phase Ⅱ(LARSE Ⅱ)[J]. Bulletin of the Seismological Society of America, 94(2): 619-632.
DOI
URL
|
[30] |
Massonnet D, Rossi M, Carmona C, et al. 1993. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 364(6433): 138-142.
DOI
URL
|
[31] |
Motagh M, Bahroudi A, Haghighi M H, et al. 2015. The 18 August 2014 MW62 Mormori, Iran, earthquake: A thin-skinned faulting in the Zagros Mountain inferred from InSAR measurements[J]. Seismological Research Letters, 86(3): 775-782.
DOI
URL
|
[32] |
Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 1135-1154.
DOI
URL
|
[33] |
Pinel-Puysségur B, Grandin R, Bollinger L, et al. 2014. Multifaulting in a tectonic syntaxis revealed by InSAR: The case of the Ziarat earthquake sequence(Pakistan)[J]. Journal of Geophysical Research: Solid Earth, 119(7): 5838-5854.
DOI
URL
|
[34] |
Reasenberg P A, Simpson R W. 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake[J]. Science, 255(5052): 1687-1690.
PMID
|
[35] |
Rosen P A, Hensley S, Zebker H A, et al. 1996. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry[J]. Journal of Geophysical Research: Planets, 101(10): 23109-23125.
|
[36] |
Schoenbohm L M, Burchfiel B C, Chen L Z. 2006. Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan plateau[J]. Geology, 34(10): 813-816.
DOI
URL
|
[37] |
Shaw J H, Shearer P M. 1999. An elusive blind-thrust fault beneath metropolitan Los Angeles[J]. Science, 283(5407): 1516-1518.
PMID
|
[38] |
Shen Z K, Wang M, Zeng Y, et al. 2015. Optimal interpolation of spatially discretized geodetic data[J]. Bulletin of the Seismological Society of America, 105(4): 2117-2127.
DOI
URL
|
[39] |
Tapponnier P, Lacassin R, Leloup P H, et al. 1990. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between IndoChina and South China[J]. Nature, 343(6257): 431-437.
DOI
URL
|
[40] |
Tapponnier P, Peltzer G, Dain A, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616.
DOI
URL
|