Strong earthquakes(magnitude>6.5)typically cause coseismic surface ruptures of several kilometers or even hundreds of kilometers long on the surface. Coseismic surface rupture is the most intuitive geomorphic representation of an earthquake on the surface, and its geometry and distribution characteristics provide important information about the fault activity. Field investigation is the most basic means for research on coseismic surface fractures, but for areas that are hard to access or have harsh climatic environments, field investigation is often greatly limited. In recent years, the increasing abundance of high-resolution remote sensing images and the rapid development of photogrammetry methods can help us quickly obtain high-resolution topographic and geomorphic data of the study area, to better identify the fine geometry of the earthquake surface rupture zone and measure the offsets of geomorphic markers along the fault. The Litang Fault is a sinistral strike-slip fault located within the Sichuan-Yunnan rhombic block on the eastern edge of the Qinghai-Tibetan plateau. Several historical earthquake events have occurred on this fault, such as the 1890 and 1948 earthquakes, and clear seismic surface ruptures still exist along the fault so far. Previous studies have conducted a series of works on the coseismic surface rupture of this fault, but most of these works were based on field investigations or relatively low-resolution remote sensing images, and there is still a lack of fine research on the coseismic surface rupture of the fault. In this paper, the coseismic surface rupture of the 1890 earthquake which occurred on the Litang Fault was selected as the study object. To obtain high-resolution topographic data of this fault, the WorldView satellite stereo images were used to generate a 0.5-m-resolution orthophoto and a 1-m-resolution Digital Elevation Model(DEM)of the Litang fault based on the photogrammetry method. With the high-resolution topographic data, the fine geometry of the 1890 earthquake surface rupture zone was mapped in detail. The mapping results show that the total length of the surface rupture is about 27km, with an overall strike of N40°W. The rupture is mainly characterized by sinistral strike-slip motion, with a certain degree of dip-slip component in local areas. Except for the interval of approximately 6km with no surface rupture at the Wuliang River floodplain in the Litang Basin, the surface ruptures are relatively continuous at other locations. In addition, various rupture styles have been identified along the fault, including en echelon tension cracks, mole tracks, sag ponds, fault scarps, and displaced gullies. Furthermore, the sinistral offsets of 90 groups of linear geomorphic markers such as gullies and ridges were measured along the fault, which range from 1m to 82.4m. We further estimated the Cumulative Offset Probability Distribution(COPD)of the offsets located on the terrace I of the Wuliang River, which are all in the range of 0-9m. The COPD plot displays four distinct peaks at 1.3m, 2.4m, 4.3m, and6.1m, respectively. Previous studies have reported that the terrace I of Wuliang River formed at about(4 620±40)a BP. Thus, it can be indicated that the Litang fault may have experienced at least four strong earthquake events since(4 620±40)a BP, and the smallest peak of 1.3m may represent the coseismic displacement of the most recent 1890 earthquake. The rupture length of the latest 1890 earthquake was about 27km, and the coseismic sinistral offset was about 1.3m, yielding an estimated moment magnitude of MW6.8-7.1. The coseismic offset of the other three earthquakes was about 1.8m, 1.9m, and 1.1m from old to new, respectively, yielding a magnitude estimate of MW7.3, MW7.3, and MW7.0, with a size comparable to the 1890 earthquake. The research results fully demonstrate the potential of high-resolution remote sensing images in the study of fine characteristics of earthquake surface rupture.
As an important part of the land geomorphic unit, river is one of the main geological forces to shape the surface morphology. The fluvial geomorphic development characteristics are extremely sensitive to tectonic activities and record rich tectonic deformation information in geological history. Therefore, through the information extraction and quantitative analysis of bedrock river, we can reverse the relevant information about the tectonic evolution history. By extracting topographic information, comprehensively analyzing the spatial differences of fluvial geomorphological parameters, sieving the influencing factors such as tectonic, climatic and lithological characteristics, and quantifying the intensity of tectonic activity have become an important research tool for the segmental differences of active faults.
The Northern Zhongtiao Mountains Fault is an active fault that controls the uplift of the Zhongtiao Mountains and subsidence of the Yuncheng Basin, and can be divided into the Hanyang, Yongji, Yanhu and Xiaxian sections from south to north. The activity of each section of the fault is closely related to the shaping of the present-day topography of the Zhongtiao Mountains, and it is a typical area for applying quantitative analysis of fluvial landform to the study of the segmentation differences along the fault. So we can effectively study the distribution characteristics of tectonic activity in the fault zone through the river geomorphological features of Zhongtiao Mountains. In this paper, by extracting information on the river topography of the bedrock mountain watershed system on the northern slopes of the Zhongtiao Mountains, parameters such as the normalized steepness index ksn, slope S, geometric features of the stream longitudinal profile of the drainage system, the location of the knickpoints and the amount of variant incision between upstream and downstream of the knickpoints are obtained. The results show that the bedrock channels on the northern slopes of the Zhongtiao Mountains has experienced accelerated incision in the longitudinal direction, and that the spatial variation of geomorphological parameters such as the normalized steepness index ksn, slope S and fluvial incision in the lateral direction is dominated by tectonic uplift, with high values in the Hangyang-Yongji section and decreasing in a segmental manner towards the west, which is consistent with the topographic relief of the Zhongtiao Mountains, but contradicts the high slip rate area and the Cenozoic subsidence centre(the Salt Lake).
The geomorphic response to the slip rate is inconsistent with the topographic relief of the Zhongtiao Mountains, which is high in the west and low in the east. The high value area of geomorphic parameters reveals that the present active tectonic area of the Northern Zhongtiao Mountains Fault is located in the Hanyang-Yongji segment in the south, rather than the salt lake segment with high activity rate. The reason may be related to the migration of part of the activity of Huashan piedmont fault along the NE-trending hidden fault of Huayin Shouyang to the Hanyang Yongji segment of Zhongtiao Mountains. It suggests that the tectonic activity center of the Northern Zhongtiao Mountains Fault moves westward. Compared with the structural deformation caused by the change of sedimentary center, the time scale of river geomorphology response to structural deformation is shorter, and the landform is transformed most rapidly, which leads to the inconsistency between the geomorphological parameters and structural activities of the fault at the Northern Zhongtiao Mountains Fault.
In this paper, the seismic phase bulletin of 14381 earthquakes from January 1, 2009 to June 30, 2018 in the Weihe-Yuncheng Basin and its adjacent region were selected and analyzed. After removing the records with incomplete event information and insufficient station information, 11856 seismic events remained. A basic requirement for the double difference location method is that the distance between the pairs of seismic events is much smaller than the distance between the events and the stations and the linear scale of the velocity inhomogeneous body on the wave propagation path, so that the travel time difference between two earthquakes and the same station is only determined by the relative position between the two seismic events and the velocity of the seismic wave. In this case, the error caused by insufficient understanding of crustal structure can be effectively reduced and the result of relocation can be more accurate. Due to the large area, the whole study region was divided into three smaller parts for relocation of the events in order to reduce the influences of local structures. 8106 seismic events recorded by 52 stations were relocated using the double-difference location algorithm. It is found that the results constrained by the grid searching method are basically consistent with those obtained by other methods. The reliability of focal mechanism is affected by the number of initial motion and the azimuth distribution of the station. Therefore, when inversion of focal mechanism solution is carried out, earthquakes with more than 10 clear initial motion phases are selected, and the maximum azimuth gap between two stations with clear initial motion is required to be less than 90°. The azimuth coverage of the initial motion on the source sphere was measured according to azimuth and take-off angle distributions, and the focal mechanism solutions with poor coverage were eliminated. The contradiction ratio of focal mechanism solutions is less than 0.2. The average difference of b-axis of the best fitting solutions is less than 20°. Finally, the focal mechanism solutions of 346 seismic events with ML≥2 were determined with initial motion of P and S waves. Normal type and strike-slip type earthquakes are widely distributed, accounting for more than 60% of all seismic events, and most of them are concentrated near fault zones. Before the formal inversion, the study area was divided into 1°×1° grids, and a series of damping coefficients were set to obtain the trade-off curve between the residual error of data fitting and the length of the stress field inversion model. The crustal stress field of 1°×1° grid in Weihe-Yuncheng Basin was obtained based on focal mechanism solution and stress tensor damping inversion method, and a certain number of depth profiles vertical to the faults were constructed for the analysis. The results show that compared with the original locations of seismic phase bulletin, the distribution of seismic events after relocation is more concentrated along the fault strike in plane. Vertically, they are densely distributed along the fault plane. There are more earthquakes in and around Shanxi graben, but the magnitude is generally small. The seismic activity in Weihe rift is relatively weak. Before the relocation, the focal depth distribution was concentrated in 5~10km, but after the relocation, the focal depth distribution changed significantly. The earthquakes were concentrated in the range of 10~25km, the overall focal depth was concentrated in the range of 20km, and a small number of earthquakes occurred in the range of 25~35km. The focal depth in the basin is relatively shallow with depth range of 5~15km. The focal depth at both ends of the basin tends to deepen, and the deepest depth can reach about 30km, which is consistent with the results of previous studies. The results of the depth profiles show that most of the fault planes in the study area have a large dip angle, similar to the occurrence of the surface, and some fault planes are even nearly vertical. The motion properties of fault structure and focal mechanism indicate that the faults in the study area are mainly normal and strike-slip ones. The results of stress field inversion indicate that the R values, which indicate the stress state, of the other regions are all less than 0.5 except for some areas in the southeastern margin of the research area. The stress state of Weihe-Yuncheng Basin tends to be tensile, and the maximum horizontal principal stress direction is nearly EW in Weihe rift and NNE and NEE in southern Shanxi rift, which is basically consistent with previous studies.
LiDAR, as a newly developed surveying technology in recent decades, has been widely used in engineering survey, protection of cultural relics and topographic measurement, and it has also been gradually introduced to studies of tectonic activities. Although the digital photography technology has been used in the study of palaeoearthquake, the information would be still acquired by traditional geological sketch from trenches. Due to the limitation of photography itself, it is difficult to overcome the distortion of information. With its high information content, accuracy, convenience, safety and easy operation, LiDAR, as a new technology, broadens the access to data and information for palaeoearthquake study.
Interactions of two global-scale geodynamic systems control Cenozoic tectonic evolution of continental eastern Asia: the collisional and convergent system between Indian and Eurasian plates, the subduction and back-arc extensional system along the western Pacific and Indonesian oceanic margins. The warm and broad Tethys Ocean separates the Indian plate in the south from the Eurasian plate in the north, while the former subducts beneath the latter. In the meanwhile, the Pacific plate continuously subducts westward beneath the Eurasian plate. As the rate of subduction decreases with the time, back-arc extensional basins began to form due to trench rollback along the subduction zone. Though it is still under debate on the timing of initiation of collision between India and Eurasia, the main stage or significant collision probably took place between 55 and 45Ma. The collision and subsequent penetration of India into Eurasia cause retreat of the Tethys Ocean, crustal thickening of the southern and central Tibet, uplifting of Proto-Tibetan plateau, and southeastward extrusion of crustal material of Tibetan plateau. The timing and direction of extrusion of Tibet's crustal material coincide with acceleration of trench rollback of back-arc extensional system along the western Pacific and Indonesian oceanic margins. The collision caused shortening and trench rollback induced extension appear to form a causal "source-sink relationship". In the period of 30 to 20Ma, the northeastward convergence of the Tibetan plateau increased as the southeastward extrusion slowed down that in turn caused northeastward and eastward growth of the plateau. The Main Boundary Thrust became southern collisional boundary between the Indian and Eurasian plates. The northern deformational boundary migrated to the Kunlun Fault zone, forming compressional foreland basins such as the Qaidam, Hexi Corridor, and Longxi Basins. The rapid trench rollback has decreased along the subduction and back-arc extensional system along the western Pacific and Indonesian oceanic margins. As a result, the Japan Sea has ceased extension and the North China Plain Basin has changed from rifting to thermal subsidence. The east-west direction extension initiates in the interior of Tibetan plateau since approximate 10Ma ago, forming a series of north-trending grabens and half-grabens in the high altitudes above 5 000m. In the same time, the Tibetan plateau grows outward so that the Qilian Shan uplifted to form a major mountain range along the northern boundary and the Longmen Shan uplifted again to form an about 4000 relief with respect to Sichuan Basin. Along the eastern coast of Eastern Asia, subduction of Pacific plate beneath the Eurasian plate has accelerated to terminate back-arc extension.
The Yabrai range-front fault is a normal fault,which is about 120km long,trends N60°E and distributes along the southeast margin of the Alashan block. In this paper,we focus on the geomorphology and kinematics of the Yabrai range-front fault,and discuss the implications of the fault for the regional tectonics. This fault consists of three segments and the most active one is located in the southwest,which has a length of about 35km. The about 1~2m-high scarp,stretching almost the full segment,might be the result of the latest earthquake event. Fresh free surface indicates that the elapsed time of the last event should not be long. The middle segment is about 31km in length. The results suggest that just a single fault is developed along the piedmont of the Yabrai Shan,and there is no evidence of recent activity on this fault. In contrast to the simple geometric structure of the middle segment,the northeast segment consists of several faults. The scarps of the most recent earthquake event,which are clear but discontinuous,are about 0.5~1.5m high and some are up to 2m. Although the scarps along the southwest and northeast segments of the fault are similar,it is difficult to suggest they are caused by the same earthquake without precise dating. The seismic reflection profile suggests that the Yabrai range-front fault came into being as a normal fault in Cretaceous,when the Tibetan plateau did not emerge at that time. Therefore,we conclude that the Yabrai range-front fault is not the consequence of the Indo-Asian collision. But this region plays a great role in constraining the tectonic evolution of the Alashan block and therefore,the Tibetan plateau.
The April 20,2013,MS 7.0 Lushan earthquake occurred along the southwestern part of the Longmen Shan Fault zone. Tectonics around the epicenter area is complicated and several NE-trending faults are developed. Focal mechanisms of the main shock and inversions from finite fault model suggest that the earthquake occurred on a northeast-trending,moderately dipping reverse fault,which is consistent with the strike and slip of the Longmen Shan Fault zone. NE-trending ground fissures and soil liquefaction along the fissures,heavy landslides along the Dachuan-Shuangshi and Xinkaidian Faults were observed during the field investigations. No surface ruptures were found in the field work. GPS data indicate that the fault on which this earthquake occurred is a fault east of or near the Lushan county and the earthquake also triggered slip on the fault west of the Lushan county. Field observations,GPS data,focal fault plane,focal depth,and distribution of the aftershocks suggest, that the seismogenic structure associated with the MS 7.0 Lushan earthquake is the décollement beneath the folds of the eastern Longmen Shan. Slip along this decollement generated the earthquake,and also triggered the slip along the Dachuan-Shuangshi and Xinkaidian Faults.
On April 20,2013,a strong earthquake of MS 7.0 struck the Lushan County,Sichuan Province of China. In this paper,basic information of the April 20,2013 Lushan earthquake,historical earthquakes in the Lushan earthquake struck area and associated historical earthquake-triggered landslides were introduced firstly. We delineated the probable spatial distribution boundary of landslides triggered by the Lushan earthquake based on correlations between the 2008 Wenchuan earthquake-triggered landslides and associated peak ground acceleration(PGA).According to earthquake-triggered landslides classification principles,landslides triggered by the earthquake are divided into three main categories: disrupted landslides,coherent landslides,and flow landslides. The first main category includes five types: rock falls,disrupted rock slides,rock avalanches,soil falls,and disrupted soil slides. The second main category includes two types of soil slumps and slow earth flows. The type of flow landslides is mainly rapid flow slides. Three disrupted landslides,including rock falls,disrupted rock slides,and soil falls are the most common types of landslides triggered by the earthquake. We preliminary mapped 3883 landslides based on available high-resolution aerial photographs taken soon after the earthquake. In addition,the effect of aftershocks on the landslides,comparisons of landslides triggered by the Lushan earthquake with landslides triggered by other earthquake events,and guidance for subsequent landslides detailed interpretation based on high-resolution remote sensing images were discussed respectively. In conclusion,based on quick field investigations to the Lushan earthquake,the classifications,morphology of source area,motion and accumulation area of many earthquake-triggered landslides were recorded before the landslide might be reconstructed by human factors,aftershocks,and rainfall etc. It has important significance to earthquake-triggered landslide hazard mitigation in earthquake struck area and the scientific research of subsequent landslides related to the Lushan earthquake.
On July 22,2013,an earthquake of MS 6.6 occurred at the boundary between Minxian County and Zhangxian County,Gansu Province of China. Many landslides were triggered by the earthquake and the landslides were of various types,mainly in falls,slides,and topples occurring on loess cliffs,and also including soil deep-seated coherent landslides,large-scale soil avalanches,and slopes with cracks. Most of the landslides were distributed in an elongated area of 250km2,parallels to the Lintan-Dangchang Fault, with about 40km in length and the largest width of 8km. Landslides occurrence shows obvious difference along the central line of the elongated area,corresponding to different characteristics of different segments of the seismogenic fault. The elongated landslides main distribution area and the location of the epicenter indicate that the direction of the fault rupture propagation is from southeast-east to northwest-west. Finally,two probable reasons causing the horizontal distance of about 10km between the central line of the elongated area and the Lintan-Dangchang Fault are presented.
On July 22,2013,the Minxian-Zhanxian MS 6.6 earthquake occurred at the central-northern part of the South-North Seismic Belt. In the area,complicated structural geometries are controlled by major strike-slip fault zones,i.e.the Eastern Kunlun Fault and the Northern Frontal Fault of West Qinling. The distribution of related seismic disasters,namely,the ellipse with its major axis trending NWW,is in good accord with the strike of the Lintan-Tanchang Fault. Severe damages in the meizoseismal area of the Minxian-Zhangxian MS 6.6 earthquake are located within the fault zone. So it is considered that the earthquake related damages are closely related to the complicated geometry of the Lintan-Tanchang Fault,and it also indicates that the earthquake is the outcome of joint action of its secondary faults. Based on field investigations,and by integrating the results of previous studies on active tectonics,structural deformation and geophysical data,it can be inferred that the southward extension of the Northern Frontal Fault of West Qinling and the northeastward extrusion of the Eastern Kunlun Fault in the process of northeastward growth of Tibetan plateau are the main source of tectonic stress. Basic tectonic model is provided for strong earthquake generation on the Lintan-Tanchang Fault.
Field investigation and damage evaluation of the Lushan M7.0 earthquake have revealed that the seismogenic fault of this earthquake is a typical blind fault with thrust component and there is no distinct surface rupture or deformation zone. The earthquake caused severe damage and failure such as mountain landslide,bedrock collapse,sand liquefaction on near-fault region and tensional fractures. In order to estimate the influence of strong ground motion on damage distribution,based on the inversion of slip distribution and rupture process on the source fault of the Lushan 7.0 earthquake,strong ground motion simulation is carried out with finite-fault model and three-dimension crust model of Lushan area and its adjacent region. In the finite-fault model,the rupture source is characterized as a low-angle fault plane with inhomogeneous slip distribution. The maximum slip on fault plane is up to 150cm. For the three-dimension crust model,deep fault structure,steep terrain and basin have been taken into account and described by different physical parameters. In this paper,the numerical simulation results of strong ground motion about Lushan main earthquake reveal two following major characters. The first is that the distribution characteristics of peak acceleration values,peak velocities and peak displacements on the ground surface shows good consistency with the seismic damage investigation. On the hanging-wall of the causative fault,high intensity of strong ground motion mainly concentrates on Baosheng,Longmen and the northern area of Lushan,which are located within the IX meizoseismal area. Around the area of Longmen town,the maximum acceleration of UD component reaches up to 350gal and the maximum transient displacement is up to 110cm,which are consistent with recordings and investigations. The second conclusion from simulation results is that the strong ground distribution and propagation process are influenced by basin effect and steep terrain. Seismic wave propagated back and forth in intermountain basins,combining with the amplification of thin soil layers,which directly caused and increased the earthquake damage.
K-Feldspar MDD(Multiple Diffusion Domain)and fission track are two commonly-used methods in low closure temperature thermal chronometry.By modeling both the feldspar 39 Ar/40 Ar data and the fission track age and track-length data,the thermal history that sample underwent can be revealed and the effective temperature range of both feldspar 39 Ar/40 Ar method and fission track method is extended.Because of the multiple resolution of modeling,it is important to restrict the modeling process to gain a reasonable result,though it seems difficult.The possible problem in modeling thermal history is presented in this paper,and the helpful method that can be used to improve the result is illustrated by the sample collected along Saishitengshan in the northern margin of Qaidam Basin.Three rapid cooling events,occurring at 130~150Ma,30~40Ma and 5~10Ma respectively,in northern margin of Qaidam Basin are revealed by feldspar MDD method and fission track method.