地震地质 ›› 2025, Vol. 47 ›› Issue (4): 1292-1305.DOI: 10.3969/j.issn.0253-4967.2025.04.20240061

• 研究论文 • 上一篇    

同震及震后形变约束的2020年3月青藏高原南部定日 MW5.7 地震发震构造

杨九元1)(), 温扬茂2,3),*(), 许才军2,3), 杨见兵4)   

  1. 1)华北水利水电大学, 测绘与地理信息学院, 郑州 450046
    2)武汉大学, 测绘学院, 武汉 430079
    3)湖北珞珈实验室, 武汉 430079
    4)空军预警学院, 武汉 430019
  • 收稿日期:2024-04-28 修回日期:2024-05-28 出版日期:2025-08-20 发布日期:2025-10-09
  • 通讯作者: 温扬茂, 男, 1982年生, 博士, 教授, 主要从事构造大地测量研究, E-mail: ymwen@sgg.whu.edu.cn
  • 作者简介:

    杨九元, 男, 1990年生, 2022年于武汉大学获大地测量学与测量工程专业博士学位, 讲师, 主要从事大地测量反演与构造形变研究, E-mail:

  • 基金资助:
    国家自然科学基金(42304007); 国家自然科学基金(42374003); 国家自然科学基金(42074007)

SEISMOGENIC STRUCTURE OF THE DINGRI MW5.7 EARTH-QUAKE OF MARCH 20, 2020 (SOUTHERN QINGHAI-XIZANG PLATEAU) CONSTRAINED BY THE COSEISMIC AND POSTSEISMIC DEFORMATION

YANG Jiu-yuan1)(), WEN Yang-mao2,3),*(), XU Cai-jun2,3), YANG Jian-bing4)   

  1. 1)College of Surveying and Geo-informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
    2)School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
    3)Hubei Luojia Laboratory, Wuhan 430079, China
    4)Air Force Early Warning Academy, Wuhan 430019, China
  • Received:2024-04-28 Revised:2024-05-28 Online:2025-08-20 Published:2025-10-09

摘要:

2020年3月20日, 青藏高原南部申扎-定结断裂带附近发生了一次 MW5.7 浅源地震, 为通过现代卫星大地测量技术探究该研究程度较低区域的发震构造提供了机会。文中利用Sentinel-1A卫星升、 降轨SAR影像获取了该地震同震及震后半年的地表形变。同震模拟结果揭示地震成核于一条埋深于1.6~5.7km深度的之前未被识别的正断层。深入的震后分析表明震后余滑与同震滑动孕育于同一断层面, 且位于其上倾0.8~4.8km深度处。该地震深部同震滑动及浅部余滑共同成像一条近完整的单平面地下发震断层。通过对反演结果、 地形地貌及断层特性的分析, 推断构造区域内较高的重力势能差可能是地震发生的主因。同震库仑应力模拟显示, 申扎-定结断层带南、 北分支断层表现较强的应力加载, 应注意其破裂风险。

关键词: 青藏高原南部, 定日地震, 同震形变, 震后形变, 平面状正断层, 重力势能

Abstract:

On 20 March 2020, an MW5.7 shallow normal-faulting earthquake struck the Shenzha-dingjie fault zone, southern Xizang, providing a significant opportunity to understand the regional seismogenic structure in the little-studied area using the modern satellite geodetic technology. The ascending and descending SAR images from the Sentinel-1A satellite are utilized to derive both the coseismic LOS deformation and the first half-year postseismic LOS deformation associated with this earthquake. The ranges of the coseismic LOS displacements in the ascending and descending interferograms are -13.6 to 2.8cm and -14.6 to 2.2cm, respectively, while the range of the postseismic LOS displacements in the ascending interferograms is -4.8 to 2.6cm. Our coseismic modeling result shows that the earthquake nucleated on a previously unidentified normal fault buried at depths of 1.6 to 5.7m, and that the maximum coseismic slip of ~0.85m is located at a depth of ~4.7km. The coseismic slip distribution model generated a seismic moment of ~3.65×1017N·m, equivalent to a moment magnitude(MW)of 5.7. The result of the postseismic deformation throughout nearly half a year following the mainshock shows that the deformation magnitude gradually increases over time and that the deformation increased significantly in the first three months, while the increase trend was relatively slow in the later period. The ranges of the cumulative postseismic surface deformation are -4.8 to 2.6cm. In-depth postseismic analysis reveals that postseismic afterslip and coseismic slip are located at the same fault plane and that the postseismic slip limited to a depth of 0.8 to 4.8km, lies in the up-dip area of the coseismic slip. The seismic moment released by postseismic slip distribution is ~7.8×1016N·m, corresponding to an MW5.2 earthquake. The peaking postseismic slip of ~0.23m is located at a depth of ~2km. The deep coseismic slip and shallow postseismic afterslip of this earthquake image an almost complete single planar seismogenic fault structure. By a comprehensive analysis of the inversions, regional topography, landforms and active fault kinematics, we conclude that contrasts in the gravitational potential energy of the regional structure may be the main cause of this earthquake. In addition, coseismic Coulomb stress modelling shows the fairly strong stress loading at both the southern and northern branch fault segments of the Shenzha-dingjie fault zone, with the stress values reaching 0.04MPa and 0.18MPa, respectively. Given that these two branch faults exhibit relatively large positive Coulomb failure stress changes without seismicity during and after this earthquake, the risk associated with these two faults should be given attention. This study demonstrates that the combined data of coseismic and postseismic surface deformation can precisely detect the underground seismogenic fault structure of the hidden normal-faulting earthquake.

Key words: Southern Qinghai-Xizang Plateau, Dingri earthquake, coseismic deformation, postseismic deformation, planar normal fault, gravitational potential energy